
K. Fuchsberger, Y. Inntjore Levinsen (CERN, Geneva, Switzerland)

Abstract

MadX (Methodical Accelerator Design), a very com-
monly used software package to model particle accelera-
tors, is implemented and still maintained in the program-
ming languages C and FORTRAN. For detailed process-
ing, analysis and plotting of MadX results, other program-
ming languages are often used. One very popular scripting
language is Python, which is widely used in the physics
community and provides powerful numerical libraries and
plotting routines. Therefore, access to MadX models from
Python is a common demand. Currently, several possible
concepts for the realisation of such a project are evalu-
ated, including direct access to MadX via Cython (C ex-
tensions for Python) or the re-usage of the existing JMad
Java libraries, benefiting from the already available model-
definitions. A first prototype is already in use and we have
released the code under an open source license. This paper
presents the concepts and the current status of the project,
as well as some usage examples.

MOTIVATION
MadX [1] is the latest iteration of the highly successful

MAD program code, used by a very large community at
CERN and elsewhere. Numerous lattice models exist for
most accelerators at CERN, including the SPS, the LHC
and the transfer lines which are regularly maintained and
updated. MadX is designed as a standalone software with
its own scripting language, which is used to interface with
the software.

Although this MadX-language contains many elements
of a scripting language (like loops or if/else statements) it
is not (and was never intended to be) a full programming
language with custom libraries. Therefore the necessity
arises to post-process output data with other tools, espe-
cially when doing complex simulation tasks. The typical
way of using MadX from a higher level programming lan-
guage other then MadX scripting is:

1. Create an input file for MadX (ASCII file) contain-
ing model definition calls, input parameters and com-
mands to export the results.

2. Call MadX with the created input file.
3. Wait until MadX terminates.
4. Parse the MadX output files.
5. Postprocess the data (e.g. plot).

Although this can be easily done because of the highly
configurable MadX text file output features, it has several
disadvantages, including:

• Creating MadX files by simply composing strings as
demanded by the application is very error-prone and

makes the application code very dependent on the
MadX scripting language as well as on the model.

• When MadX is ran with input file, it terminates when
it has finished. Since this also requires to load the se-
quence (model definition) it becomes a very time con-
suming procedure, especially when many iterations
are needed (e.g. for fitting purposes).

• Every application developer ends up in implementing
its own MadX parser.

All these disadvantages can be avoided if steps 1 to 4
are encapsulated in a dedicated software package with a
well defined API in a higher level programming language.
Starting and stopping of MadX can be avoided by keeping
a running instance with the actual model status in memory.
All the communication can then be done in the language-
typical way which allows proper error handling and the us-
age of language specific libraries.

This concept has already proven useful in the form of
JMad1 [2, 3], an API for the Java programming language
which is used by different simulation tools and LHC online
applications. The need for a similar API for the Python pro-
gramming language arises from the fact that this language
is widely used in the physics community and that sophisti-
cated numerical and plotting libraries exist for Python.

DESIGN GOALS

Since every programming language has its own charac-
teristics, an API for one programming language does not
necessarily fit directly in another language. For JMad a lot
of effort was put in type safety to detect errors already at
compile time. Since Python is a scripting language, this is
not possible. On the contrary, Python users expect a very
flexible set of commands and parameters, and checks for
type safety at run time. In that sense Python fits nicely
the approach of the MadX proprietary scripting language,
where most of the function parameters are optional. While
both Python and Java are object oriented languages, it is
common in Python to provide convenience functions that
(at least partially) hide the underlying object oriented struc-
ture. When designing PyMad, we tried to follow similar
principles.

Another important aspect related to the usage of MadX
is what we call ’model definitions’. A model definition pro-
vides the MadX script files needed to setup a valid model
for a certain accelerator together with the knowledge in
which order to call them and what options are available
(e.g. different optics or sequences). During the develop-
ment of JMad, a lot of effort was made to establish a simple
work-flow to create and maintain such model definitions.

1http://cern.ch/jmad

PyMad – INTEGRATION OF MadX IN PYTHON

Proceedings of IPAC2011, San Sebastián, Spain WEPC119

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques 2289 C
op

yr
ig

ht
c ○

20
11

by
IP

A
C

’1
1/

E
PS

-A
G

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)

Therefore, it is highly desirable to reuse these definitions
in other libraries. This ensures that the same models are
used for simulations with different libraries and that the re-
sults are comparable.

OVERVIEW

To fulfil the goals mentioned in the previous section, two
ideas were born:

• Compile MadX as a shared library and use Cython to
access the internal functions.

• Access a running instance of JMad and wrap some
Python-like functionality around it.

Both concepts have certain advantages that we will out-
line later. To explore the possibilities of either one and at
the same time establish a user friendly API, we decided to
create a common project. The components involved in this
project are outlined in Fig. 1.

Figure 1: Overview of PyMad components.

The main idea of PyMad is to provide one API which
can be used in two different modes. As visible in Fig. 1,
the main API is named PyMad. The implementation which
uses the existing JMad infrastructure is denoted JPyMad
while the one directly accessing MadX as a shared library is
named CPyMad. If user scripts only use the common API,
then they can be run against both of the implementations,
choosing by a simple switch which one to use.

USAGE

Installation

Depending on the intended usage (CPyMad, JPyMad or
JPyMad with GUI), different installation steps are neces-
sary. Detailed instructions can be found on the PyMad
website2. The sourcecode of PyMad was released under the
Apache 2.0 License3 and is currently available on Github4.

2http://www.cern.ch/pymad
3http://apache.org/licenses/
4https://github.com/pymad/pymad

Example scripts

Listing 1 shows a typical example: First the PyMad en-
vironment is initialised. This is done by calling the func-
tion init(). The first parameter of this function is a string
which defines the mode to use (’cpymad’ or ’jpymad’).
All the rest of the parameters which can be given here de-
pend on the mode (For example in the listing the paramter
start=’gui’ is used, which instructs JPyMad to start the
java graphical user interface). The init function returns a
PyMadService object. This service provides methods to list
the available model definitions and create and delete mod-
els. Depending on the implementation, a PyMadService

can have one or more running models. In the example then
a new model (with the model-definition name ’lhc’) is cre-
ated. Then the twiss functions are calculated for this model
and plotted using Matplotlib.

Listing 1: plot beta.py

from matplotlib import pyplot as plt
import pymad as pm

create the service
#pms = pm.init(’cpymad’)
pms = pm.init(’jpymad’, start=’gui’)

create a model by name of model-definition
model = pms.create_model(’lhc’)

obtain get twiss table in a python object
table, summary = model.twiss(columns=[’name’,

’s’, ’betx’, ’bety’])

plot the result
plt.plot(table.s, table.betx)
plt.show()

cleanup everything (e.g. close gui)
pms.cleanup()

Although it is good practice to use the service returned
by the init method, this is not absolutely necessary in all
cases: Internally, the service is kept as a singleton instance
and the PyMad API provides several convenience methods
which then access this singleton per default. This is demon-
strated in listing 2, which prints out all the available model
definitions provided by the service and all the currently run-
ning models.

Listing 2: ls info.py

import pymad as pm

#pm.init(’cpymad’)
pm.init(’jpymad’, start=’gui’)

print the name of all model definitions
pm.ls_mdefs()

list the available (running) models
pm.ls_models()

pm.cleanup()

WEPC119 Proceedings of IPAC2011, San Sebastián, Spain

2290C
op

yr
ig

ht
c ○

20
11

by
IP

A
C

’1
1/

E
PS

-A
G

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques

IMPLEMENTATION DETAILS

JPyMad
This implementation arose from experiences during the

development of JMad. The key idea was to use as much
as possible from the JMad infrastructure and only imple-
ment the top components which define the API for Python
scripts. We chose to use Py4j5 as bridge between java and
Python. Py4j allows Python to access objects from a run-
ning java instance and also java programs to call Python
scripts. It does so by creating a TCP connection between
an object on the java side (called a GatewayServer) and
one on the Python side (called a JavaGateway). The advan-
tage of using this technology is that all the existing Python
libraries can be used. This would not be possible if one
would e.g. use Jython, which is a Python implementation
which runs in the java virtual machine itself.

CPyMad
Python has an efficient syntax and garbage collection,

but as a scripting language it suffers from slowness in many
cases. Using compiled libraries in the background with
Python as the front end can drastically improve the per-
formance. A framework that simplifies this approach is
Cython. Cython is a Python implementation with added
C definitions. A dynamically compiled binary is created
which can then be imported into a normal Python code.
Cython is an excellent tool to integrate existing C libraries
in higher level Python routines. It can also be used to
speed-up existing Python code by declaring e.g. loop vari-
able as C type variables instead of the slower Python de-
clared variables.

Listing 3: madx structures.pxd: sequence & sequence list

cdef extern from "madx.h":
struct sequence:

char[48] name
pass # ignore the rest of the struct

struct sequence_list:
sequence **sequs
int curr
pass

We use these features for the second implementation,
named CPyMad. In CPyMad we use a MadX as a shared
library together with Cython files which define the accessi-
ble structures and functions in MadX. This implementation
provides the very interesting feature that we can directly ac-
cess the memory of MadX, not having to go through files.
This can give significant gains on slow network disks or if
you want to load large tables of data.

Listing 4: Print Sequence Names

from cpymad.madx_structures cimport
sequence_list

Mad-X header file..
cdef extern from "madextern.h":
sequence_list *madextern_get_sequence_list()

5http://py4j.sourceforge.net

this can be called in a Python script.
def print_sequence_names():
cdef sequence_list *seqs
seqs= madextern_get_sequence_list()
for i in xrange(seqs.curr):
print("seqs.sequs[i].name")

For illustrative purposes, we show in Listing 3 a small
part of the structures defined in MadX. Listing 4 shows
the minimal code needed to generate a function that prints
the sequence names currently available in MadX, based on
these structures.

Comparison
Both implementations have their own advantages and

disadvantages and specialities: Since CPyMad accesses the
MadX model directly, it is expected to perform better than
the JPyMad implementations, whose communication with
MadX is based on pipes and files. Both JPyMad and CPy-
Mad can run an arbitrary amount of models in parallel, but
it requires CPyMad to use multiprocessing (currently im-
plemented for the models). Advantages for JPyMad are
the existing Java GUI, which can be used in parallel to the
Python scripts, and the many already existing model defini-
tions. We hope in the near future to converge on the model
definitions in JMad and CPyMad.

Currently, CPyMad can only be installed on Linux and
OSX operating systems, since a dynamically linked library
of MadX is not available for Windows. JPyMad runs on
all three platforms. While JPyMad requires a Java runtime
installed on the system, CPyMad does not.

SUMMARY AND OUTLOOK
Already in this early stage of implementation, PyMad

is a useful tool that comfortably combines the power of
MadX simulations and Python libraries. PyMad provides a
clean API with two different implementations: One (CPy-
Mad), which accesses the memory of MadX directly and
one (JPyMad) which uses the existing JMad infrastructure.
The next steps for JPyMad will be to expose more and more
JPyMad features (e.g. object oriented access to the model-
elements) to the Python API. For CPyMad it will be impor-
tant to provide a mechanism to also use the JMad model
definitions to guarantee the comparability of results. Fur-
ther, work on the readout of the twiss table from MadX
memory is ongoing, which finally will replace the current
data-transfer between Python and MadX and therefore is
expected to drastically improve the speed.

REFERENCES

[1] W. Herr, F. Schmidt “A MAD-X Primer”, CERN AB Note,
CERN-AB-2004-027-ABP.

[2] K. Fuchsberger et al., “JMad - Integration of MadX into the
Java World”, proceedings IPAC 2010.

[3] K. Fuchsberger et al., “Status of JMad, the Java-API for
MadX”, these proceedings.

Proceedings of IPAC2011, San Sebastián, Spain WEPC119

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques 2291 C
op

yr
ig

ht
c ○

20
11

by
IP

A
C

’1
1/

E
PS

-A
G

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)

