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Abstract
The TOTEM experiment at the LHC is equipped with

near beam movable devices – called Roman Pots (RP) –
which detect protons scattered at the interaction point (IP5)
arriving to the detectors through the magnet lattice of the
LHC. Proton kinematics at IP5 is reconstructed from posi-
tions and angles measured by the RP detectors, on the basis
of the transport matrix between IP5 and the RP locations.
The precision of optics determination is therefore of the
key importance for the experiment. TOTEM developed a
novel method of machine optics determination making use
of angle-position distributions of elastically scattered pro-
tons observed in the RP detectors together with the data
retrieved from several machine databases. The method has
been successfully applied to the data samples registered in
2010 and 2011. The studies show that the transport matrix
could be estimated with a precision better than 1%.

THE ROMAN POTS OF THE TOTEM
EXPERIMENT

Proton-proton elastic scattering was measured by the
TOTEM experiment at the CERN Large Hadron Collider
at

√
s = 7 TeV in dedicated runs [1, 2]. To detect leading

protons scattered at angles as small as 1μrad, silicon sen-
sors are placed in movable beam-pipe insertions, so-called
Roman Pots (RP), located symmetrically on either side of
the LHC intersection point IP5 at distances up to 220m
from it. Each RP station is composed of two units separated
by a distance of about 5m. A unit consists of 3 RPs, two
approaching the outgoing beam vertically and one horizon-
tally, allowing for a partial overlap between horizontal and
vertical detectors and the alignment precision of 10 μm.

PROTON TRANSPORT FROM IP5 TO
THE ROMAN POTS

Scattered protons are detected in the Roman Pots after
having moved through a segment of the LHC lattice con-
taining 29 magnets per beam. The trajectory of protons
with transverse positions1 (x∗, y∗) and angles (Θ∗

x,Θ
∗
y) at

IP5 are described with a linear formula

�d = T · �d∗, (1)

where �d = {x,Θx, y,Θy,Δp/p}T with nominal beammo-
mentum p and momentum lossΔp. The transport matrix T

1The ∗ superscript indicates the LHC Interaction Point 5

is defined by the optical functions

T =

⎛
⎜⎜⎜⎜⎝

vx Lx m13 m14 Dx

v′x L′
x m23 m24 D′

x

m31 m32 vy Ly Dy

m41 m42 v′y L′
y D′

y

0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ . (2)

The magnification vx,y =
√
βx,y/β∗ cosΔφx,y and the ef-

fective length Lx,y =
√
βx,yβ∗ sinΔφx,y are functions of

the betatron amplitude βx,y and the relative phase advance
Δφx,y =

∫ RP

IP
β(s)−1

x,yds and are particularly important for
the proton kinematics reconstruction. The coupling coeffi-
cients mi,j are close to 0 and the vertex contributions are
canceled due to the anti-symmetry of the scattering angles.
Therefore, the kinematics of elastically scattered protons at
IP5 can be reconstructed from Equation (1) as:

Θ∗
y ≈ yRP

Ly,RP
Θ∗

x ≈ 1
dLx,RP

ds

(
Θx,RP − dvx,RP

ds
x∗

)
, (3)

where “RP” defines the measurement location. As the val-
ues of the reconstructed angles are directly inversely pro-
portional to the optical functions, the accuracy of optics
defines the systematic errors of the final physics results.
The proton transport matrix T (s;M) over a distance

of s is defined by the machine settings M. It is calcu-
lated with the MAD-X [3] code for each group of runs with
identical optics based on several data sources. The magnet
currents are retrieved from TIMBER [4] and are converted
to strengths with LSA [5], which implements the conver-
sion curves measured by FIDEL [6]. The WISE database
[7] contains the measured imperfections (field harmonics,
magnet displacements and rotations).
However, the lattice is subject to additionalΔM imper-

fections, not measured well enough so far, which alter the
transport matrix byΔT :

T (s; M) → T (s; M+ΔM) = T (s; M) + ΔT.

The 5–10% precision of Δβ/β beating measurement does
not allow to estimate ΔT with the accuracy required by
the TOTEM physics program. However, the magnitude of
|ΔT | can be evaluated from the tolerances of the LHC im-
perfections of which the most important are:
• Strength conversion error I → B , σ(B)/B ≈ 10−3

• Beam momentum offset σ(p)/p ≈ 10−3 .

Their impact on optical functions is presented in Table 1. It
is clearly visible that the imperfections of the inner triplet
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(the MQXA and MQXB magnets) are of high influence on
the transport matrix while the optics is less sensitive to the
quadrupoles MQY and MQML.
Other imperfections are of lower significance:
• Magnet rotations σ(φ) ≈ 1 mrad
• Beam harmonics σ(B)/B ≈ 10−4

• Power converter errors σ(I)/I ≈ 10−4

• Magnet positionsΔx,Δy ≈ 100μm.

Generally, as can be seen in Table 1, for large β ∗ optics
the magnitude of ΔT is sufficiently small from the view-
point of data analysis and thereforeΔT does not need to be
precisely estimated. However, the low β∗ optics sensitivity
to the machine imperfections is significant and cannot be
neglected. Fortunately, in this case ΔT can be determined
precisely enough from the proton tracks in the Roman Pots.

Table 1: Sensitivity of the vertical effective length Ly to
magnet strengths and beam momentum perturbed by 1 �
for low- and large-β∗ optics.

δLy/Ly [%]
Perturbed element β∗ = 3.5m β∗ = 90m
MQXA.1R5 0.98 0.14
MQXB.A2R5 −2.24 −0.23
MQXB.B2R5 −2.42 −0.25
MQXA.3R5 1.45 0.20
MQY.4R5.B1 −0.10 −0.01
MQML.5R5.B1 0.05 0.04

Δp/p −2.19 0.01

CONSTRAINTS FROM PROTON TRACKS
IN THE ROMAN POTS

The elements of the transport matrix are functions of
the betatron amplitudes βx,y and the phase advances φx,y .
Therefore they are mutually related. Moreover, the elastic
scattering ensures that the scattering angles in both arms
are identical:

Θ∗
x,b1 = Θ∗

x,b2 , Θ
∗
y,b1 = Θ∗

y,b2 , (4)

which allows to compute ratios between the effective
lengths of the two beams. From Equation (1) we get:

R1 ≡ Θx,b1,RP

Θx,b2,RP
≈

dLx,b1,RP
ds Θ∗

x,b1
dLx,b2,RP

ds Θ∗
x,b2

=

dLx,b1,RP
ds

dLx,b2,RP
ds

, (5)

R2 ≡ yb1,RP
yb2,RP

≈ Ly,b1,RP

Ly,b2,RP
(6)

where b1 and b2 indicate beam 1 and beam 2. The ratios
R1 and R2 can be estimated with a 0.5% precision.
Furthermore, the distributions of proton angles and po-

sitions detected in Roman Pots define ratios of certain ele-
ments of the transport matrix T . First of all, dLy/ds and

Ly are related by

R3 ≡ Θy,b1

yb1
≈

dLy,b1

ds

Ly,b1

, R4 ≡ Θy,b2

yb2
≈

dLy,b2

ds

Ly,b2

, (7)

with a 0.5% precision.
Similarly, we exploit the horizontal distributions to

quantify the relation between dLx/ds and Lx. Contrary to
the previous case, Lx is close to 0 and instead of defining
the ratio we rather estimate the position s (with the preci-
sion of about 1m) along the beam where Lx equals to 0 by
solving

Lx(s)

dLx(s1)/ds
=

Lx(s1)

dLx(s1)/ds
+ (s− s1) = 0 , (8)

where s1 is the beginning of the Roman Pot station. The
ratio dLx(s1)

ds /Lx(s1) is defined by the proton distributions

R5 ≡ xb1

Θx,b1

≈ Lx,b1
dLx,b1

ds

, R6 ≡ xb2

Θx,b2

≈ Lx,b2
dLx,b2

ds

. (9)

Finally, tracks determine as well the coupling components
of T . Due toLx ≈ 0 at the Roman Pot locations, the further
four constraints can be defined

R7 ≡ xb1,near pots

yb1,near pots
≈ m14,b1,near pots

Ly,b1,near pots
, (10)

R8 is defined with the far pots, and R9,10 respectively for
beam 2. These four constraints can be estimated with a 3%
accuracy.

OPTICS MATCHING
On the basis of the constraints R1...R10, ΔT can be de-

termined with the χ2 minimization procedure. The relevant
lattice imperfections were selected forming a 26 dimen-
sional optimization phase space, which includes the mag-
net strengths, rotations and beammomenta. Due to the high
dimensionality of the phase space and approximately linear
structure of the problem there is no unique solution. There-
fore, the optimization is subject to additional constraints
defined by the machine tolerances. Finally, the χ2 is com-
posed of the part defined by the values measured with the
Roman Pots (discussed in the previous section) and such
reflecting the LHC tolerances:

χ2 = χ2
Measured + χ2

Design, (11)

where the design part

χ2
Design =

12∑
i=1

(
ki − ki,MADX

σ(ki)

)2

+
12∑
i=1

(
φi − φi,MADX

σ(φi)

)2

+

2∑
i=1

(
pi − pi,MADX

σ(pi)

)2

,

defines the nominal machine as an attractor in the phase
space, and the measured part

χ2
Measured =

10∑
i=1

(
Ri −Ri,MADX

σ(Ri)

)2

(12)
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contains the track based constraintsR1...R10 together with
their errors. The subscript “MADX” defines the parameter
optimized with the MAD-X software.
Table 2 presents the results of the optimization procedure

for β∗ = 3.5m. The obtained value of the effective length
Ly of beam 1 is close to the nominal one, while beam 2
shows a significant change. The same pattern applies to the
values of dLx/ds.

Ly,b1[m] dLx,b1/ds Ly,b2[m] dLx,b2/ds
Nominal 22.4 −3.21·10−1 18.4 −3.29·10−1

Matched 22.6 −3.12·10−1 20.7 −3.15·10−1

Table 2: Selected optical functions of both LHC beams ob-
tained with the matching procedure compared to their nom-
inal values for β∗ = 3.5m.

MONTE-CARLO VALIDATION
The procedure has been extensively verified with Monte

Carlo studies. The nominal machine settings were per-
turbed in order to simulate the LHC imperfections and the
simulated proton tracks were used afterwards to calculate
the optimization constraints R1...R10. The study included
the impact of

• magnet strengths
• beam momenta
• displacements, rotations
• kickers, harmonics
• elastic scattering Θ-distributions

The results obtained for the β∗ = 3.5m study are sum-
marized in Figures 1 and 2 and their statistical descrip-
tion is given in Table 3. The distributions of optical func-
tions’ errors indicate that the optical functions can be re-
constructed with a precision of 0.2%, which confirms the
validity of the proposed approach.

Table 3: Monte-Carlo validation results of Roman Pot track
based optics estimation. Themachine imperfections induce
large spread of optical functions. The matching procedure
estimates the optics with errors lower than 2.1�.

Machine with imperfections
before after matching

Optical function Mean RMS Mean RMS
relative error [%] [%] [%] [%]

δLy,b1

Ly,b1
0.77 3.0 5.7 · 10−3 9.9 · 10−2

δdLx,b1
/ds

dLx,b1
/ds 1.0 1.1 −1.2 · 10−1 2.1 · 10−1

δLy,b2

Ly,b2
2.0 3.8 1.5 · 10−1 9.5 · 10−2

δdLx,b2
/ds

dLx,b2
/ds −1.14 1.2 −7.6 · 10−2 2.1 · 10−1

After matching
Entries  1001
Mean   0.005716
RMS    0.09932
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Figure 1: Relative error distribution of Ly for beam 1 be-
fore and after matching.

After matching
Entries  1001
Mean   -0.1243
RMS    0.2098
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Figure 2: Relative error distribution of dLx/ds for beam 1
before and after matching.

CONCLUSIONS AND OUTLOOK
TOTEM proposed a novel approach to optics estimation.

First of all, the method allows to asses the optical func-
tions’ errors from machine tolerances. Secondly, it allows
to determine the real optics solely from the Roman Pot pro-
ton tracks. The method has been validated with the Monte
Carlo studies both for large- and low-β ∗ optics. With its
application TOTEM has published elastic scattering dis-
tributions obtained with different running conditions. It
is foreseen to extend the proposed approach to model the
transport of protons with large momentum loss.
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