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Abstract
The geometry of an accelerator cavity determines its

eigenmodes and thereby its performance characteristics.

Therefore, accelerating performance and wakefield charac-

teristics may be improved by an intentional modification of

the geometry. However, undesired geometry perturbations

due to manufacturing tolerances and operational demands

can likewise impair it. To analyze the effects of geometry

variations on the eigenmodes, parameter studies are to be

undertaken. Using common eigenmode solvers it usually

is necessary to perform a full eigenmode computation for

each variation step, even if the geometry is only slightly al-

tered. Parameter studies for cavity perturbations thus tend

to be computationally extensive and inefficient. In this pa-

per, we present the fundamentals of an efficient eigenmode

computation method for varying cavity geometries. Know-

ing a set of initial eigenmodes of an unperturbed geometry,

the method allows expanding the eigenmodes of any ge-

ometry that is part of the unperturbed one as a series of the

initial eigenmodes. Thereby the computation effort may

be reduced significantly. The method is demonstrated by

means of analytically evaluable cavity geometries.

INTRODUCTION
The shift of the resonant frequency of a specific eigen-

mode arising from a deformation of a cavity’s geometry

can be calculated using Slater’s Theorem [1]

ω̃i − ωi

ωi

=

∫∫∫
ΔV

(
μ|Hi(r)|2 − ε|Ei(r)|2

)
dV

4Ui

. (1)

Ei(r), Hi(r) and Ui are the electric and magnetic station-

ary field pattern and the energy of the ith mode of the un-

perturbed cavity. All characteristics of the perturbed cavity

are distinguished from those of the unperturbed one by an

additional tilde e.g. ωi is the unperturbed and ω̃i the per-

turbed resonant frequency. ε and μ are the permittivity and

the permeability inside the cavity. V is the unperturbed

cavity volume and ΔV is the part that is removed from V
by the deformation.

Slater’s theorem (ST) offers a simple approximation for

the frequencies of the perturbed cavity but not for the elec-

tromagnetic fields. In [2] and [3] a generalisation of ST is

presented that also allows the calculation of the perturbed
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fields by using a set of unperturbed modes instead of a sin-

gle one. For the generalisation not only the interaction of

the corresponding unperturbed mode i with itself (like in

(1)) is evaluated but also the interactions with (ideally) ev-

ery other mode k

sik = 2

∫∫∫
ΔV

(
ωiμHi(r) ·Hk(r)− ωkεEi(r) ·Ek(r)

)
dV.

(2)

The complete algorithm is described in [3]. In [4] we ex-

amined the applicability of the method concluding that it

provides very accurate results for the resonant frequencies

and the fields of the perturbed cavity using a small set of

unperturbed modes. However, it turned out that this is only

the case if the order of the mode does not exceed an certain

explicit limit. The results for modes beyond this order are

profoundly incorrect. Seriously, the critical mode order and

thereby the maximal number Nmax of modes is exclusively

limited by the extent of the relative geometry perturbation

Δξ/ξ

Nmax =

⌈
ξ

2Δξ

⌉
− 1 (3)

and cannot be improved by using a larger set of unperturbed

modes. Consequently, we developed another method seek-

ing to overcome this limitation. In the following, the new

method is described exemplarily for the computation of

electric fields. The magnetic fields may be derived from

the electric ones.

THEORY
Since the electric field patterns of a cavity form a sys-

tem of mutually orthogonal functions (δik is the Kronecker

Delta)

δik =
ε

2Ui

∫∫∫
V

Ei(r) ·Ek(r) dV (4)

δik =
ε

2Ũi

∫∫∫
˜V

Ẽi(r) · Ẽk(r) dV (5)

it follows that the perturbed fields can be expanded in terms

of the unperturbed ones

Ẽi(r) =

N∑
k=1

aik ·Ek(r). (6)

Here the aik are the sought weighting factors. Substituting

(6) into (5) and normalizing 2˜Ui

ε to 1 (disregarding the unit
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V2m) the following expression can be derived

δik =

N∑
m=1

N∑
n=1

aim · akn

∫∫∫
˜V

Em(r) ·En(r) dV. (7)

Since Ṽ = V + ΔV , the integral in (7), denoted as the

interaction term gmn, can also be written as

gmn =

∫∫∫
˜V

Em(r) ·En(r) dV (8)

=

∫∫∫
ΔV

Em(r) ·En(r) dV + δmn (9)

by using (4) and normalizing 2Ui

ε also to 1. As can be seen,

it is only necessary to evalute the unperturbed fields inside

the (small) deformed volume ΔV to determine gmn. Re-

garding the interactions of a set of N unperturbed modes

(7) can be written in matrix form

I = A G AT . (10)

Examing the eigensystem of the interaction matrix G leads

to the conclusion that the eigenvectors pk form an orthog-

onal matrix P (I = P PT , each row of P contains one

pk) and that the major part (N̂ ) of the eigenvalues λk is 1

(the rest lies between 0 and 1). Since the diagonal matrix

Dλ, containing the eigenvalues, is approximately identical

to the identity matrix I and due to the orthogonality of P
the eigenvalue problem can be transformed to

PT Dλ = G PT

PT I ≈ G PT

I ≈ P G PT . (11)

Comparing (10) and (11) shows that P approximately sat-

isfies the orthogonal condition for the weighting factor ma-

trix A. To achieve full validity all eigenvalues unequal to

1 are removed from the N×N–matrix Dλ resulting in a

new N̂×N̂–matrix D̂λ = I . Likewise, the corresponding

eigenvectors are removed from P to create a N̂×N–matrix

P̂ for which I = P̂ P̂T is still valid. (11) than becomes

I = P̂ G P̂T . (12)

However, P̂ is not the desired matrix A. The fields com-

puted thereby are orthogonal functions but no proper field

patterns. Expanding (12) by an arbitrary orthogonal ma-

trix W

I = WT P̂ G P̂T W (13)

leads to the conclusion that further solutions for (10) exist

A = WT P̂ . (14)

To get a unique and particularly the correct matrix A an

additional condition is needed. Therefore the Helmholtz

equation is used, which has to be valid for every unper-

turbed and perturbed mode

ΔEi(r) = −εμωi
2 ·Ei(r) (15)

ΔẼi(r) = −εμω̃i
2 · Ẽi(r). (16)

Substituting (6) and (15) into (16) results in

N∑
k=1

ω̃2
i · aik ·Ek(r) =

N∑
k=1

ωk
2 · aik ·Ek(r). (17)

which also can be expressed in matrix form

Dω̃2 A = A Dω2 (18)

after cancelling the field vectors. Further transformation

of (18) using (14) and I = P̂ P̂T leads to an expression

which represents another eigenvalue problem

W Dω̃2 = (P̂ Dω2 P̂T ) W. (19)

The matrix (P̂ Dω2 P̂T ) can be calculated from known

quantities. Its eigenvalues provide the resonant frequencies

ω̃i of the first N̂ perturbed modes. Its eigenvector matrix

WT can be inserted into (14) to determine the weighting

factors aik which finally yield the perturbed electric fields

using (6).

RESULTS
The new perturbation method was applied to coaxial cav-

ity structures. Since both the unperturbed and the perturbed

eigenmodes of such a (seemingly simple) structure are ana-

lytically known it is well suited to analyse the applicability

and accuracy of the method excluding numerical errors. In

the following, selected results of a coaxial cavity subjected

to length variations are shown.

The most important fact is that the number of com-

putable modes N̂ is no longer limited by the extent of the

perturbation. In case of a relative perturbation of 10% the

prior method only provided 4 correct modes no matter how

many unperturbed modes were used (see (3)). Our investi-

gations of the new method show that

N̂ = (1−Δξ/ξ)N (20)

i.e. by using 100 unperturbed modes for a 10% perturbation

a total of 90 perturbed modes can be computed.

Furthermore, enlarging the set of unperturbed modes si-

multaneously increases the number of computable modes

and their accuracy as fig. 1 shows. Based on a set of 300

modes the resonant frequencies of 270 perturbed modes

were determined with a relative deviation of about 10−3

for a length reduction of 10%. Even for the extreme per-

turbation of 50% (which is beyond any genuine case) 50

perturbed frequencies were computed with an error smaller

than 10−2 using only 100 unperturbed modes. So the

method not only overcomes the limitation of the mode or-

der but also provides results with a good accuracy. This
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Figure 1: Relative deviation of the numerically approx-

imated perturbed resonant frequency from the analytical

one depending on the mode index i (length reduction of

10% / 50%, set of 100 / 300 unperturbed modes).

is also evident for the perturbed field patterns. The ap-

proximated fields of lower order modes and the actual ones

match excellently. Even the higher order modes (HOMs)

of an exceedingly perturbed cavity may be expanded in

terms of a reasonable number of unperturbed modes with a

very good agreement (like it is demonstrated for the TEM10

mode in fig. 2).

However, a non-avoidable effect occuring for HOMs was

observed. The error of the resonant frequency directly ef-

Figure 2: Radial electric field of the TEM10 mode along

longitudinal axis (length reduction of 10% / 50%, set of 100

unperturbed modes): Approximated and analytical field

both coincide so well that only one line can be observed.

fects the error of a single wavelength. Thus, the maximal

deviation of a field increases by its mode order (see fig. 3).

This effect can only be diminished by reducing the fre-

quency error. This can be done by using a larger set of un-

perturbed modes but at the price of a higher computational

effort. For this reason it is planned to revise the method’s

algorithm to basically improve its accuracy.

Figure 3: Radial electric field of the TEM10 mode along

longitudinal axis (length reduction of 10%, set of 300 un-

perturbed modes): The deviation between the approxi-

mated and the analytical field scales with the number of

wavelengths.

CONCLUSIONS
The presented algorithm is an efficient method for the

computation of the eigenmodes of a perturbed cavity. It

yields accurate results not only for the perturbed resonant

frequencies but also for the electromagnetic field patterns.

Furthermore, an arbitrary number of perturbed modes can

be computed, determinable by the number of used unper-

turbed modes. So, the method offers a much larger range

of application than other known perturbation methods ([1]:

only frequencies for small perturbations determinable, [2],

[3]: limitation of mode order). Since it is only necessary to

evaluate the unperturbed electric fields (not the magnetic

ones like in (2)) the computational effort may be further

reduced. Possible improvements of the accuracy could be

obtained by revising the algorithm.
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