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Abstract
We develop data analysis tools for the beam commis-

sioning of the TPS booster. The MIA (Model Independent
Analysis) [1, 2] and ICA (Independent Component Anal-
ysis) [3, 4] are used to reconstruct the lattice function and
beam parameters from turn-by-turn BPM (Beam Position
Monitor) data. The BPM data is simulated with the pro-
gram TRACY [5] for the constant beam energy and ac-
celeration modes. Data analysis includes effects of eddy
current, multipole field errors and BPM noises in our sim-
ulation.

INTRODUCTION

The TPS (Taiwan Photon Source) [6] booster is a com-
bined function FODO lattice with six superperiods, the
total circumference is 496.8 m. To prepare the commis-
sioning of the booster accelerator, we simulate turn-by-turn
BPM data to test methods of accelerator model reconstruc-
tion and optimize the machine performace. Both MIA and
ICA are applied to analyze a massive BPM data by untan-
gling eigenmodes into spatial and temporal wave functions.
The ultimate goal of data analysis is to uncover indepen-
dent source signals.
The MIA or PCA (Principle Component Analysis) [3],

tries to uncover the maximum amount of uncorrelated com-
ponents in a linear transformation of data samples. If eigen-
modes are coupled, one needs to apply narrowbandfiltering
to isolate relevant modes [2]. The ICA uses PCA as pre-
procesor, and carries out un-equal time auto-correlation in
order to separate mixed modes [3].
PCA (MIA) had been successfully applied to analyze

SLAC PEP-II collider and ICA to the Fermilab booster.
We would like to use them for machine analysis at NSRRC
starting from the TPS booster synchrotron. The advantage
of both methods is that we can measure lattice parameters
within seconds by using turn-by-turn BPM data. They are
useful for future TPS commissioning, modelling and opti-
mization.

BASIC ALGORITHMS
The BPM data contains information for betatron motion,

synchrotron motion (coupled through dispersion), eddy
current effects, multipole field errors, noises, etc. Equa-
tion 1 shows the horizontal transverse motion as a function
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of longitudinal position s and turn numberN ,

x(s,N) =
√
ε ·

√
βx(s) cos(νxφ(s) + χ) · cos(2πνx ·N)

+ (Δp/p) ·Dx(s) · sin(2πνs ·N)

+ eddy current effects

+ multipole field errors + noises ,

(1)

where ε, βx, νx, φ, χ, Dx and νs are emittance, beta func-
tion, betatron tune, phase advance, phase shift, dispersion
and synchrotron tune, respectively. The turn-by-turn data
matrix taken by M BPMs for N turns is represented as
Eq. 2:

X =

⎛
⎜⎜⎜⎝

x1(1) x1(2) · · · x1(N)
x2(1) x2(2) · · · x2(N)
...

...
. . .

...
xM (1) xM (2) · · · xM (N)

⎞
⎟⎟⎟⎠ , (2)

We compute the covariance matrix and decomposed it with
SVD (Singular Value Decomposition) as shown in Eq. 3:

CX = XXT = UΛUT , where Λ =

⎛
⎜⎜⎜⎝

λ1

λ2

. . .
λM

⎞
⎟⎟⎟⎠ ,

(3)

Λ is a diagonal matrix and the magnitude of diagonal ele-
ments are roughly proportional to that of the terms in Eq. 1.
One can select a cutoff threshold λc, where λ1 ≥ λ2 ≥

· · · ≥ λc ≥ · · · ≥ λM , to remove the singularity or less
important eigenmodes beyond λc, i.e., λc+1 · · ·λM .

Since the turn-by-turn BPM data can be considered as a
linear superposition of source signals in spatial and tempo-
ral representations, the SVD of matrix allows us to recon-
struct the basic linear particle motion like betatron and syn-
chrotron motions for off-momentum particle (Δp/p �= 0).
As we show in Eq. 4, the three of largest eigenmodes corre-
sponding to the spatial and temporal vectors are A1,2,3 and
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S1,2,3:

X = (UΛ1/2)(Λ−1/2UTX) =
(
A1 A2 A3 · · ·

)
⎛
⎜⎜⎜⎝

S1

S2

S3

...

⎞
⎟⎟⎟⎠ ,

A1 =

⎛
⎜⎜⎜⎝

λ1

√
βx1 sin(νxφ1)

λ1

√
βx2 sin(νxφ2)

...
λ1

√
βxM sin(νxφM )

⎞
⎟⎟⎟⎠ ,

A2 =

⎛
⎜⎜⎜⎝

λ2

√
βx1 cos(νxφ1)

λ2

√
βx2 cos(νxφ2)

...
λ2

√
βxM cos(νxφM )

⎞
⎟⎟⎟⎠ , A3 =

⎛
⎜⎜⎜⎝

λ3Dx1

λ3Dx2

...
λ3DxM

⎞
⎟⎟⎟⎠ ,

S1 =
(
cos(2πνx · 1) cos(2πνx · 2) · · · cos(2πνx ·N)

)
,

S2 =
(
sin(2πνx · 1) sin(2πνx · 2) · · · sin(2πνx ·N)

)
,

S3 =
(
sin(2πνs · 1) sin(2πνs · 2) · · · sin(2πνs ·N)

)
,

(4)

where λ1 � λ2 > λ3. We obtain the βx, φ and νx by
calculating βx = (A2

1+A2
2)×const., φ = tan−1(A1/A2),

νx = FFT(S1,2) and νs = FFT(S3), where FFT is fast
Fourier transform. The ICA algorithm further considers
matrices of time-lag data which are defined as Xτ :

Xτ =

⎛
⎜⎜⎜⎝

x1(1 + τ ) x1(2 + τ ) · · · x1(N + τ )
x2(1 + τ ) x2(2 + τ ) · · · x2(N + τ )

...
...

. . .
...

xM (1 + τ ) xM (2 + τ ) · · · xM (N + τ )

⎞
⎟⎟⎟⎠ , (5)

for τ = 1, 2, 3, · · · . One can calculate the unequal time
covariance matrix with Eq. 2, CX(τ) ≡ XXT

τ , form sym-
metric matrices CX(τ) = (CX(τ) + CT

X(τ))/2, and try
to find a unitary matrix W which diagonalizes all matri-
ces CX(τ), i.e., CX(τ) = WDW

T , whereD is diagonal.
There are several ways to find an approximation of joint di-
agonalizationW. One of them is the extension of Jacobi
technique [7]. The ICA modifies the signal extraction on
the first line of Eq. 4 as X = (UΛ1/2)(Λ−1/2UTX) =
(UΛ1/2

W)(WTΛ−1/2UTX), the spatial and temporal
vectors become A1,2,3 → A1,2,3W and S1,2,3 →

W
TS1,2,3. The unitary matrix W can decouple eigen-

modes and thus for eigenvectors once we encounter the
coupling problems in PCA (MIA).

SIMULATION STUDIES
We simulate the turn-by-turn BPM data of TPS booster

with the program TRACY. Both DC and AC modes are
considered in tracking simulation in order to understand
the effectiveness of PCA and ICA. For the DC mode, the
beam energy and RF voltage are set to constant in tracking
simulation. For the AC mode, the repetition rate of TPS
booster is 3 Hz. It takes about a hundred thousand turns to
accelerate the electron beam from 0.15 to 3.0 GeV.
Sextuple magnets are used to correct the chromaticity

induced by eddy currents [8] during the energy ramping.

We also include the multipole field errors in simulations.
The data of multipole field errors are provided by magnet
group. One of the random machines is used for tracking
simulation based on the above data. The results of simu-
lated 6-D phase space at one BPM are shown in Fig.’s 1(a),
(b) and (c). There are 60 BPMs in TPS booster. We track
the particle for 100,660 turns for one ramping cycle.
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Figure 1: For a ramping cycle in TPS booster, the 6-D
phase space, Px/P0 vs. x, Py/P0 vs. y andΔE/E vs. −ct
at one of BPMs are shown in (a), (b) and (c), respectively.
In these figures, each colour represents a time interval of
ten thousand turns.

To measure the machine property, we divide a ramping
cycle into ten intervals and collect data for a thousand turns
from each interval to extract lattice parameters with PCA
or ICA. The noise level of turn-by-turn BPM is expected to
be in the range 10 ∼ 100 μm for TPS booster. We assume
the noise has a Gaussian distribution with zero mean and
1σ = 100 μm, and assume no gain or roll errors for BPM.
Figure 2 shows an example of measurement results for

linear lattice parameters including beta function, disper-
sion, betatron and synchrotron tunes. The algorithms used
to reconstruct beam parameters are given in Eq.’s 2 ∼ 4.
The errors of reconstructed values are < 2% for βx, < 3%
for βy , ∼ 3% for horizontal dispersion Dx, and < 1% for
betatron and synchrotron tunes νx, νy and νs. The beta-
tron motion and dispersion terms are gradually decreased
due to adiabatic and radiation damping and finally below
the BPM noise level. It would be difficult to obtain lattice
parameters near the end of a ramping cycle. We can apply
a noise excitation to solve this problem.

DISCUSSIONS
We found that both PCA (MIA) and ICA can be used

to determine the linear lattice parameters with good preci-
sions. In the near future, we will include beta beat, align-
ment errors, transverse coupling, wake field, power supply
ripple effects, etc. in our simulated BPM data. We will
study the effectiveness of PCA and ICA on identifying in-
dependent modes.
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Figure 2: The reconstructed values of βx, βy and horizontal
dispersionDx at BPMs are shown as red dots in (a), (c) and
(e), respectively. The gray lines are model values along the
TPS booster. The reconstructed tunes for νx, νy and νs are
shown in (b), (d) and (f), respectively.

The calibration of BPM is crucial for data analysis. The
calibration methods of BPM are described in [9]. The BPM
noise would be large for measurement of low bunch current
in booster. These effects would limit our ability to analyze
high order eigenmodes like nonlinear sextupole strength
terms [4]. The corrections of BPM alignment errors are
also important. The gain and roll of a BPM may introduce
additional signals to horizontal and vertical betatron ampli-
tudes and affect betatron coupling measurements [2, 10].
The purpose of analysis is to create a lattice model which

is close to real machine. We propose the following proce-
dures for TPS commissioning:

• Establish the lattice model which include multipole
field errors and fringe fields based on magnet mea-
surements.

• Identify bad BPMs if any and exclude them from data
analysis.

• Calibrate BPMs and find their gain or roll errors.
• Apply ICA to identify and decouple the eigenmodes.
• Identify close orbit distortions, apply orbit corrections

and include them in the model.
• Identify betatron couplings and include them in the
model.

• Establish a precise linear lattice model, then try to an-
alyze and optimize the nonlinear lattice properties.
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