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Abstract

A new method is presented for solving Poisson’s equa-

tion inside a rectangular waveguide. The method uses Fast

Fourier Transforms (FFTs) to perform mixed convolutions

and correlations of the charge density with an integrated

Green function. Due to its similarity to the widely used

Hockney algorithm for solving Poisson’s equation in free

space, this capability can be easily implemented in many

existing particle-in-cell beam dynamics codes.

INTRODUCTION
The solution of Poisson’s equation is an essential compo-

nent of any beam dynamics code that models the transport

of intense charged particle beams, subject to the assump-

tion that the motion is nonrelativistic in the beam frame. If

the bunch is small compared to the transverse size of the

beam pipe, the conducting walls are usually neglected. In

this case the potential can be found using the Hockney al-

gorithm, where the continuous convolution-based solution

is replaced by a discrete convolution on a doubled grid [1].

The resulting discrete convolution can be performed using

Fast Fourier Transform (FFT) techniques, with the compu-

tational effort scaling as (2N)d(log22N)d, where N is the

number of grid points in each dimension of the physical

mesh and where d is the dimension of the problem.

When the bunch fills a substantial portion of the beam

pipe transversely, or when the bunch length is long com-

pared with the pipe transverse size, the conducting bound-

aries cannot be ignored. Poisson solvers have been de-

veloped to treat a bunch of charge in an open-ended pipe

with various geometries [2, 3]. Another approach is to

use a Poisson solver with periodic, Dirichlet, or Neumann

boundary conditions on the pipe ends, and to extend the

pipe in the simulation to be long enough so that the field is

essentially zero there.

Here a new algorithm is presented for the open-ended

rectangular pipe. Since its structure is similar to the FFT-

based free-space method, it is straightforward to add this

capability to codes that already have the free space solver.

Also, since it is Green-function based, it does not require

modeling the entire transverse pipe cross section, i.e., if the

beam is of small transverse extent one can model only a

small transverse region around the axis. Since it is based on

convolutions and correlations involving Green functions,

one can use integrated Green function (IGF) techniques.

These techniques have the potential for higher efficiency

and/or accuracy than non-IGF methods [4, 5, 6, 7, 8, 9].
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POISSON’S EQUATION IN AN OPEN
RECTANGULAR PIPE

The FFT-based free-space algorithm can be adapted to

treat a beam bunch in an open-ended rectangular pipe as

follows: The Green function for a point charge in an open

rectangular pipe with transverse size (0, a)× (0, b) is given

by, G =

1

2πab

∞∑
m,n=1

1

κmn
sin

mπx

a
sin

mπx′

a
sin

nπy

b
sin

nπy′

b
e−κmn|z−z′|,

(1)

where κ2
mn = (mπ

a )2 + (nπb )2. Equivalently, it is given by

G = R(x− x′, y − y′, z − z′)−R(x− x′, y + y′, z − z′)
− R(x+ x′, y − y′, z − z′) +R(x+ x′, y + y′, z − z′), (2)

where

R(u, v, w) =
1

2πab

∞∑
m,n=1

1

κmn
cos

mπu

a
cos

nπv

b
e−κmn|w|. (3)

Since FFT-based methods can be used to treat both con-
volutions and correlations [9], the solution of the Poisson
equation in an open rectangular pipe follows immediately
from Eq. (2): φi,j,k/(hxhyhz) =

Fbbb{(Ffffρi,j,k)(FfffRi,j,k)} − Fbfb{(Ffffρi,j,k)(FfbfRi,j,k)}
−Ffbb{(Ffffρi,j,k)(FbffRi,j,k)}+ Fffb{(Ffffρi,j,k)(FbbfRi,j,k)}

(4)

In the following section it will be shown how integrated

Green functions can be used to efficiently discretize the

above continuous convolutions and correlations.

INTEGRATED GREEN FUNCTION
The simplest method of discretizing a continuous con-

volution of a charge density ρ with a Green function G
involves using values of ρ and G at the grid points. This

can lead to serious inaccuracy when ρ and G have a dis-

parate spatial variation. This can happen in a variety of

situations (free space, open-ended pipe, etc.) depending on

the problem geometry and the number of grid cells in each

dimension. For example, inside a conducting pipe the beam

might be long and slowly varying, whereas the pipe Green

function decays exponentially with z.

Integrated Green functions (IGF’s) provide a means to

approximate continuous convolutions accurately when cer-

tain integrals involving G can be obtained analytically [4].

IGFs have been applied to simulations involving space-

charge, beam-beam effects, and coherent synchrotron ra-

diation [5, 6, 7, 8]. This is accomplished by assuming a

simple analytical form for the variation of ρ within a cell,

and computing certain definite integrals within each cell of

the problem. As a result, the accuracy is controlled by how

well the discretization resolves ρ, not G.
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For illustration, consider a 1D problem with isolated
boundary conditions. Suppose that linear basis functions
are used to approximate ρ within each cell. Then

φ(xi) =
1

hx

∑
i′

ρi′

∫ hx

0

dx′ (hx − x′)G(xi − xi′ − x′)

+
1

hx

∑
i′

ρi′+1

∫ hx

0

dx′ x′G(xi − xi′ − x′, ). (5)

Shifting the indices in the last sum above, collecting terms,
and factoring out hx, the IGF is the coefficient of hxρi′ ,

φ(xi) = hx

∑
i′

ρi′G
int
i−i′ . (6)

Returning to the problem of the open-ended rectangular
pipe, here we will use the IGF approach to treat the lon-
gitudinal dimension. Suppose that, inside the kth cell, the
longitudinal dependence of the charge density is given by,

ρ(z) =
1

hz
[ρk(hz − (z − zk)) + ρk+1 (z − zk)] . (7)

The longitudinal dependence of the IGF is, gz = 1
h2
z
×

∫ zk+1

zk

dz′
[
ρk(hz − (z′ − zk)) + ρk+1 (z′ − zk)

]
e−κmn|z−z′|.

(8)

Integrating and summing over cells, 2 terms from adjacent
cells contribute, with the result, gz(w) =

1
h2
zκ

2
mn

×
[
2hzκmnδw,0+

(
e−κmn|w+hz | − 2e−κmn|w| + e−κmn|w−hz |) ],

(9)

where w = z − zk. In summary, in analogy to Eq. (3),
the integrated Green function, Rint, integrated in just the
longitudinal coordinate, for a distribution of charge in an
open-ended rectangular pipe, is given by,

Rint(u, v, w) =
1

2πab

∞∑
m=1

∞∑
n=1

1

κmn
cos

mπu

a
cos

nπv

b
gz(w).

(10)

NUMERICAL EXAMPLE
Consider a rectangular waveguide of full width and

height a = b = 4 cm. The functions R and Rint

will be calculated using m,n = 1, . . . , 20. Consider a

3D Gaussian charge distribution with transverse rms sizes

σx = 6mm, σy = 6mm, and longitudinal rms size σz . The

distribution is set to zero at x2/σ2
x + y2/σ2

y + z2/σ2
z > 32.

Figures 1, 2, and 3 show convolution results for the three

different bunch lengths, σz = 1.2 cm, σz = 12 cm, and

σz = 1.2 m, respectively, for grid sizes 64 × 64 × 128
up to 512 × 512 × 1024. The upper plot of each figure

shows the potential as a function of z on-axis for vari-

ous grid sizes, comparing results based on the ordinary

Green function and the integrated Green function. The

lower plot shows the relative error of the calculated po-

tential. In Fig. 1, σz is less than the pipe transverse size

(1.2 cm vs. 4 cm); both the ordinary Green function and

the IGF are accurate to better than 1% for all the grid sizes

shown. In Fig. 2, σz is somewhat larger than the pipe trans-

verse size (12 cm vs. 4 cm); when the grid is coarse, the

ordinary Green function has significant errors (a few per-

cent to several tens of percent), while the IGF accuracy is

1% or better. In Fig. 3, σz is much larger than the pipe

transverse size (1.2 m vs. 4 cm); in this case when the

grid is coarse the ordinary Green function results exhibit

huge errors (more than 100%), while the IGF accuracy is

still 1% or better. As mentioned above, the accuracy of the

IGF results depends on how well the grid resolves just ρ.

For the non-IGF results, the accuracy depends on resolv-

ing both the ρ and G, and, due to the exponential fall-off

of the G, a coarse grid gives unusable results. The relative

error in the potential is shown in the lower plots. These

were obtained be plotting (φ−φhighres)/φhighres), where

φhighres is the highest resolution result, obtained using the

IGF with a 512× 512× 1024.

Figure 1: Top: On-axis potential vs. z showing the ordinary

Green function result and the Integrated Green function

(IGF) result for various grid sizes. The bunch is a Gaussian

distribution with σx = σy = 6mm, σz = 1.2 cm. Bottom:

Relative error of the on-axis potential vs. z for grid sizes

64× 64× 128, 128× 128× 256, and 256× 256× 512.

DISCUSSION AND CONCLUSION
A new method has been presented for solving Poisson’s

equation in an open-ended rectangular pipe. Compared

with the Hockney method for isolated systems which can

be computed with a single FFT-based convolution, the new
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Figure 2: Top: On-axis potential vs. z showing the ordinary

Green function result and the IGF result for various grid

sizes. σx = σy = 6mm, σz = 12 cm. Bottom: Relative

error of the on-axis potential vs. z.

method involves 4 mixed convolutions and correlations

(Eq. (4)). Starting with the Green function for a charge in

an open-ended rectangular pipe (Eqs. (2-3)), an Integrated

Green function (IGF) was derived (Eqs. (9-10)). Simula-

tions of a Gaussian beam in an open-ended pipe showed

that the IGF approach is more robust, i.e., it retains much

better accuracy than the non-IGF method over a wide range

of bunch lengths. This is because the accuracy of the IGF

approach depends only on having a fine enough grid re-

solve the spatial variation of the charge density. In contrast,

the non-IGF approach is sensitive to disparities between the

spatial variation of the Green function and the density.

In theory the calculation of the IGF, which is represented

as an infinite series in Eq. (10), could make the simulation

much more time consuming than for free-space boundary

conditions. But in practice this is unlikely since free-space

simulations often re-grid at every time step (or as needed)

to account for the changing beam size. This would not be

the case for the rectangular pipe solver if the beam filled

most of the pipe transversely, since the IGF would be com-

puted once, Fourier transformed 4 ways, stored, and reused.
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