
CUDA KERNEL DESIGN FOR GPU-BASED BEAM DYMANICS

SIMULATIONS
∗

K. Amyx, J. Balasalle, I. Pogorelov† , Tech-X Corporation, Boulder, CO 80303

M. Borland, R. Soliday, Y.Wang, Argonne National Laboratory, Lemont, IL 60439

Abstract

Efficient implementation of general purpose particle

tracking on GPUs can result in significant performance

benefits to large scale particle tracking and tracking-based

accelerator optimization simulations. We present our

work on accelerating Argonne National Lab’s accelerator

simulation code ELEGANT [1, 2] using CUDA-enabled

GPUs [3]. In particular, we provide an overview of beam-

line elements ported to GPUs and briefly discuss optimiza-

tion techniques for efficient utilization of the device mem-

ory space, with an emphasis on register usage. We also

present a novel hardware-assisted technique for calculating

a large histogram, and compare this to data-parallel imple-

mentations. In addition, we provide an overview of recent

work on a new build system for ELEGANT and integrat-

ing GPU-accelerated elements with the existing codebase

in a manner that allows ’silent’ support of GPU accelera-

tion. We conclude the paper with results of a realistic test

simulation and comments on future work related to GPU-

enabled version of ELEGANT.

EXTENDING ELEGANT’S LIBRARY OF

BEAMLINE ELEMENT KERNELS

ELEGANT is an open source, multiplatform, massively

parallel code used for design, simulation, and optimization

of a wide variety of particle accelerator systems, includ-

ing free electron laser (FEL) driver linacs, energy recovery

linacs, and storage rings [1, 4]. Exploration and optimiza-

tion of accelerator design requires massive amounts of pro-

cessing power, and for that reason a substantial increase

in the throughput of simulations that are conducted with

thoroughly tested, widely used computational tools could

result in significant savings of time and effort needed to

produce optimal designs. In particular, accelerator opti-

mization techniques such as direct, tracking based dynamic

aperture (DA) and momentum aperture (MA), recently de-

veloped at Argonne National Lab (ANL) [5], can benefit

from substantial reduction in simulation time. In what fol-

lows, we describe initial results of a project to enable GPU-

accelerated simulations in ELEGANT.

Elements Ported to GPU

We have ported the following elements to CUDA and

achieved the following performance improvements. (Ac-

∗Work supported by the DOE Office of Science, Office of Basic En-

ergy Sciences grant No. DE-SC0004585, and in part by Tech-X Corpora-

tion.
† ilya@txcorp.com

celeration figures compare implementations on NVIDIA

Tesla C2070 to the serial ELEGANT reference implemen-

tations performed on a single core of an Intel Xeon 2.67

GHz.)

QUAD and DRIF: Quadrupole and drift elements, im-

plemented as a transport matrix, up to 3
rd and 2

nd order,

respectively. The computation involves contraction of the

six-component vector of particle phase space coordinates

with tensors of rank 2 and 3. Optimized kernels achieve 80

gb/s of particle data bandwidth (i.e., are bandwidth bound)

while exceeding 200 GFLOPs in double precision for a to-

tal acceleration of nearly 100x.

CSBEND: A canonical kick sector dipole magnet with

the exact Hamiltonian. Optimized kernels achieve roughly

90x acceleration.

KQUAD, KSEXT, and MULT: A canonical kick

quadrupole, canonical kick sextupole, and a canonical kick

multipole element using 4
th order symplectic integration.

Similar in implementation to CSBEND, but with less arith-

metic intensity and higher memory access requirements.

These kernels achieve a modest 20x acceleration.

RCOL: A rectangular collimator that checks if particles

should be removed from the simulation. Lower arithmetic

intensity yields a bandwidth bound kernel, for accelerations

on the order of 30x.

EDRIFT: An exact drift element that tracks particles

through a drift with no approximations. Extremely low

arithmetic intensities yield bandwidth bound kernels with

accelerations on the order of 30x.

LSCDRIFT: A drift with longitudinal space charge el-

ement based on the longitudinal space charge impedance

model in [7]. This is an example of a collective-effects ele-

ment, where the first step of calculation of the voltage kick

for each particle is an FFT performed on a histogram of

particles’ longitudinal coordinates. Costly computation of

a histogram (described in detail below) is overshadowed by

computationally intensive single particle effects, yielding a

performance of 36x.

General Purpose Algorithms

Particle Data Transposes and Inverse Transposes: GPU-

based transformation kernels for converting back and

forth between CPU data structures (in ELEGANT, stored

in Array-of-Structures format) and GPU data structures

(stored in Structure-of-Arrays format) achieve bandwidths

of 90 gb/s using shared memory to coalesce both reads and

writes. By comparison, a simple bandwidth test kernel that

reads and writes particle data in Structure-of-Arrays for-

Proceedings of IPAC2012, New Orleans, Louisiana, USA MOPPC089

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques

ISBN 978-3-95450-115-1

343 C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



mat in a manner typical of other GPU-accelerated element

kernels achieves 88 gb/s of bandwidth.

Stream compaction of killed particles: Serial implemen-

tations of rectangular collimator (RCOL) elements, along

with a variety of other elements (e.g., CSBEND), remove

particles from the simulation using a data swapping algo-

rithm not suitable for GPUs. Stream compaction operations

in GPU-accelerated elements rely on the Thrust template

library’s [6] remove if and gather kernels to remove par-

ticles. These operations are roughly twice as costly as, for

example, the rectangular collimator kernel itself, which de-

termines if the particles should be removed. Applying the

stream compaction sparingly will be critical to maintaining

high performance in simulations which feature large num-

bers of elements that can remove particles.

Kahan Summation: ELEGANT, by default, uses the

Kahan summation algorithm [8] to reduce floating point

roundoff error in large summations. We have developed

kernels that utilize Kahan summation along with tree-based

reductions to minimize the accumulation of roundoff er-

ror. Note that, because RMS error is proportional to the

square root of the number of elements summed, typical tree

based GPU accelerated reductions are actually more accu-

rate than their CPU counterparts.

Optimization Techniques

Many of the straightforward CUDA implementations

discussed above were extremely prone to two similar prob-

lems: use of local memory instead of registers, and spillage

of registers to both local and global memory.

Use of local memory instead of registers, especially for

the 6D vectors that describe each particle, causes a very

large performance hit because registers are orders of mag-

nitude faster than local memory. The NVCC compiler

will, by default, store per thread arrays in local memory

(verified by inspecting the PTX assembly for instances of

the str.local mnemonic), unless the compiler can com-

pletely determine all thread access patterns. Use of the

#pragma unroll directive, along with manual unrolling

of more complicated inner loops, was key in increasing the

performance of the QUAD and DRIF kernels from 30x to

100x.

Initial implementations of the CSBEND, KQUAD,

KSEXT, and MULT kernels all exhibited signs of spilling

registers. Use of constant memory for parameters reduced

the amount of register spillage in some cases, but the in-

tensive calculations still spilled from register space to local

memory, and even from local memory to global memory.

This was alleviated by reconfiguring the Fermi Shared / L1

cache to favor L1 cache size at the expense of shared mem-

ory, via cudaFuncSecCacheConfig.

For other kernels, particularly those in LSCDRIFT, ker-

nel fusion was applied to reduce memory bandwidth re-

quirements when possible.

Histogram Calculation in the LSCDRIFT Ele-

ment

The 1D longitudinal space charge calculation in the

LSCDRIFT element is based on the LSC impedance model

described in [7]. Schematically, the space charge kick cal-

culation is performed by binning current distribution based

on longitudinal particle positions (this is essentially the

same as binning charge), performing a Fourier transform on

the discretized charge distribution, multiplying the result in

transform space by an analytically or numerically specified

impedance, and then performing the inverse Fourier trans-

form and interpolation to obtain the voltage of the kick

experienced by particles in the original (physical) space.

Computation of the beam current histogram (charge bin-

ning) is the most challenging of the calculations in LSC-

DRIFT to implement on a GPU.

Three alternative algorithms were implemented and

tested: a data parallel version utilizing the sort and

lower bounds functions of the open source template li-

brary Thrust; a data parallel algorithm based on a per block

bitonic sort and segmented scan; and a hardware assisted

implementation based on per-block atomicAdd() opera-

tions. Surprisingly, the per-block atomicAdd() method

yielded the best performance, because atomic operations

on Fermi GPUs are capable of utilizing the L1 cache. We

ensure that all atomic operations are ’on cache’ by restrict-

ing each thread block to operating only on preallocated ar-

rays, thus avoiding costly global memory accesses. A sec-

ondary kernel combines the subsequent partial histograms.

Figure 1: Charge binning based on per-block cached

atomic operations

Proper choice of kernel parameters (relatively few

threads per block and a relatively low number of to-

tal blocks) reduces the tendency of this kernel to se-

rialize memory accesses. As this kernel is extremely

work efficient and memory access efficient (provided the

atomic updates are themselves efficient), and does not

rely heavily on tree based data parallel sort or scan algo-

rithms, this approach outperforms the other implementa-

tions, achieving an acceleration of 8.7x over the reference

serial implementations. The data-parallel algorithm using

the thrust::sort and thrust::lower bounds func-

MOPPC089 Proceedings of IPAC2012, New Orleans, Louisiana, USA

ISBN 978-3-95450-115-1

344C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques



tions achieves 5.3x acceleration, and the per-warp sort and

segmented scan algorithm achieves a disappointing 3.6x

acceleration, comparing an NVIDIA Tesla C2070 with a

single core of an Intel Xeon 2.67GHz processor.

BUILD SYSTEMS AND INTEGRATION

We have revamped the original ELEGANT build system,

based on Argonne’s Epics package, to use CMake. CMake

is a widely used, cross-platform, open-source build system

that natively supports such features as CUDA integration

and streamlines finding and including external libraries, ex-

ecutables, and includes. In addition to building ELEGANT

with CMake, we have elected to build the Epics Extensions

libraries with CMake, as well, which further simplifies the

overall build process of ELEGANT. It also enables fast and

easy switching between compilers (such as going from se-

rial compilers to MPI compilers), which in turn allows for

hybrid MPI-CUDA parallelism schemes.

Our core philosophy for integrating GPU accelerated el-

ements into ELEGANT is one of “do no harm”: attempt

to minimize impact on non-GPU ELEGANT codebase by

performing conditional compilation using #define, and

call GPU-accelerated functions instead of their equivalent

CPU functions without any user intervention. That is to

say, our goal is for ELEGANT to offer ’silent support’ of

GPU acceleration when possible, and utilize CPU imple-

mentations otherwise. In this way, a user stands to benefit

from any GPU implementations of elements without need-

ing to change any input files.

Particles are kept on the GPU whenever possible to re-

duce costly memory traffic between the host and the de-

vice. We accomplish this by registering GPU enabled ele-

ments in a globally accessible function, and looking ahead

after every element is computed to check if the next ele-

ment is also GPU accelerated. If not, we perform a high-

performance transpose from GPU data structures to CPU

data structures on the device and copy the particle data back

to the CPU. This approach allows for piecemeal porting of

elements to GPUs, as whenever particles encounter an ele-

ment that is not on the GPU, they can simply be transferred

back to the CPU. Of course, per Amdahl’s law, the perfor-

mance of any simulation will be better if all elements in a

simulation are GPU enabled.

TEST SIMULATIONS

We have successfully run two GPU-accelerated test

simulations in ELEGANT, tracking 10 million particles

through a beamline ten times sequentially. For a beam-

line consisting of (in order) DRIF, DRIF, KSEXT, KSEXT,

DRIF, and KQUAD, the reference serial CPU implementa-

tion takes 362 seconds to complete, whereas the equivalent

GPU implementation takes 68 seconds. In both cases, ap-

proximately 49 seconds of run time is actually dedicated to

file I/O. Discounting the I/O time (e.g., assuming a larger

beamline), this corresponds to a net reduction in runtime of

the computational portion of ELEGANT by a factor of 16x.

An alternative simulation involving DRIF, DRIF, KSEXT,

KSEXT, DRIF, DRIF, KQUAD, CSBEND yields a reduc-

tion in the computation portion of the program runtime by a

factor of 27x, from 819 seconds to 77 seconds, where once

again 49 seconds was dedicated to file I/O.

CONCLUSION

GPU-accelerated implementations of various beamline

elements in ELEGANT achieve between 10- and 100-

times speed-up compared to reference serial implementa-

tions. Refactoring the ELEGANT build system and inte-

grating element kernel implementations into ELEGANT

allows for ’silent’ support of these GPU-accelerated ele-

ments for users of ELEGANT: no changes need be made

to input files. A short but realistic GPU-accelerated simu-

lation was run that indicated a reduction in the computation

portion of ELEGANT by a factor of 16x to 27x compared

to a serial version, running on a single Tesla C2070. Longer

simulations, or simulations that utilize mostly beamline

elements with better on-GPU performance (such as CS-

BEND or QUAD), stand to show substantially greater per-

formance improvements.

In the near future our work will be focused in the

following areas: adding additional GPU accelerated ele-

ments, further optimizing existing elements, ensuring that

the build system supports additional platforms, and inves-

tigating OpenCL support in addition to CUDA support.

ACKNOWLEDGEMENTS

This work was supported by the US DOE Office of Sci-

ence, Office of Basic Energy Sciences under grant number

DE-SC0004585, and in part by Tech-X Corporation, Boul-

der, CO.

REFERENCES

[1] M. Borland, “elegant: A Flexible SDDS-compliant Code for

Accelerator Simulation”, APS LS-287, September 2000

[2] Y. Wang, M. Borland. “Implementation and Performance of

Parallelized Elegant”, in Proceedings of PAC07, THPAN095

(2007)

[3] CUDA home page: http://www.nvidia.com/cuda

[4] M. Borland, V. Sajaev, H. Shang, R. Soliday, Y. Wang, A.

Xiao, W. Guo, “Recent Progress and Plans for the Code

ELEGANT,” in Proceedings of 2009 International Compu-

tational Accelerator Physics conference, San Francisco, CA,

WE3IOpk02 (2009)

[5] M. Borland, V. Sajaev, L. Emery, and A. Xiao, “Direct

Methods of Optimization of Storage Ring Dynamic and Mo-

mentum Aperture”, in Proceedings of PAC09, TH6PFP062

(2009)

[6] N. Bell and J. Hoberock, “Thrust: A Productivity-Oriented

Library for CUDA”, GPU Computing Gems: Jade Edition

(2011)

[7] Z. Huang et al., Phys. Rev. ST Accel. Beams 7 074401 (2004)

[8] D. Goldberg, “What every computer scientist should know

about floating-point arithmetic,” ACM Computing Surveys,

23(1): 5-48 (1991)

Proceedings of IPAC2012, New Orleans, Louisiana, USA MOPPC089

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques

ISBN 978-3-95450-115-1

345 C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)


