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Abstract

Generally in the synchrotron, the frequency of transverse

oscillation of the bunched beam for each single turn (usu-

ally called betatron tune or just ”tune”) is one of fundamen-

tal controllable knobs to avoid the instability of the accel-

erator. In this report, it is not mentioned about the effect

to the beam instability but it is focused to compare vari-

ous methods to measure the betatron tune by using turn-

by-turn transverse beam position. For the presentation, it

is used the data of J-PARC (Japan Proton Accelerator Re-

search Complex) Main Ring.

SINUSOIDAL FITTING BY SINGLE BPM

Here we treat linear betatron motion [1], the periodic po-

sition measured by the single BPM can be represented by

the following equation,

xn = A · sin(2πνx · n+B) + C (1)

A =
√

x2

0
+ (αxx0 + βxx′

0
)2

where n is turn number the bunch revolved in the ring, xn

is transverse beam position of turn n, A is amplitude which

depend on initial position and momentum (x0, x
′

0), αx, βx

are Twiss parameters at the location of the BPM, νx is the

decimal part of the betatron tune, B is initial phase and

C is the offset which is originated from closed orbit distor-

tion(COD) and BPM error. Figure 2-(a) shows turn-by-turn

horizontal positions measured in the injection phase of the

J-PARC MR. For each 5 turns the data is fitted by Eq.(2)

with least square method. Figure 2-(b) shows the tune vari-

ation obtained from the fitting. Advantage of this method

is it is model independent. Disadvantage is that we have to

set adequate initial parameters to get the successful result.

Sinusoidal Fitting to the Transverse Beam Position at One BPM
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Figure 1: (a) Sinusoidal fitting to the beam position for

each 5 turns. (b) Tune variation obtained from the fitting.
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FFT BY SINGLE BPM

FFT of Turn-by-Turn Position

When we perform discrete Fourier transformation(DFT)

to the turn-by-turn positions, we get the power spectrum

of the tune in which there are two peaks corresponding to

νx and 1 − νx solutions. For the sake of the efficient cal-

culation, it is used fast Fourier transformation (FFT) with

well known Cooley-Tukey algorithm [2]. When calculat-

ing FFT, the zero padding method is used to set the data

size to 2n. For example, in the Fig. 3, FFT spectrum

(0 < νx < 0.5) of the 230 turns of beam positions(using

the same data of Fig.2) are shown. In the Fig. 3-(a) the
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Figure 2: Spectrum by FFT of single BPM’s turn-by-turn

positions. The measured νx is shown in the graph. The

error value is estimated from HWHM of the peak. (a) FFT

with rectangle window. (b) FFT with hann window.

rectangle window is applied, and in the Fig. 3-(b) hann

window is applied. The error of tune is estimated by the

half width at half maximum(HWHM) of the peak. Ad-

vantage of this method is it is model independent and fur-

thermore we don’t need any adequate initial parameters.

Thanks to this feature we can perform totally automatic

calculation of the tune. Disadvantage is that the S/N of

the FFT peak is dependent on the resolution of the turn-by-

turn positions. For example of J-PARC MR, it is required

at least 0.2mm of betatron amplitude to distinguish the FFT

peak of the betatron motion from the noise floor.

FFT of ∆-signal of BPM

One of the most popular method to measure the tune is

using FFT power spectrum of the BPM’s ∆-signal. Where

∆-signal means the waveform data of the difference of the

voltage of a pair of pickups. Figure 4-(a) shows the ex-

ample of the power spectrum (FFT with hann window)

of ∆-signal (using the same data of Fig.2). Figure 4-(b)

is the enlarged view around 20th harmonics of revolution

frequency(frev = 185.76kHz) and it’s sideband peaks.
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The tune can be calculated by the following formula,

νx =
∆f

frev
(2)

where ∆f is the difference of frequency between the peak

of n-th harmonics of frev and it’s sideband peak which is

originated from betatron motion. To avoid the fake peak

of the noise in the lower frequency, relatively higher n
is selected. Advantage of this method is it it model in-

ν
x
 = ∆f/f_rev = 0.3973 ± 0.0033
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Figure 3: (a) Spectrum by FFT of ∆-signal of a pair of

BPM’s pickups. (b) Enlarged view around 20th harmonics

of frev and it’s sideband peaks. The obtained tune is shown

at top of the graph, where error is estimated from HWHM

of the sideband peak.

dependent and valid for small betatron amplitude. If we

use dedicated equipment (Spectrum Analyzer) which can

take many frames of FFT spectrum, we can measure longer

range of tune shift. This is useful to investigate the instabil-

ity caused by the resonance area of the tune. Disadvantage

is that we need revolution frequency and expected value of

the tune to find the sideband peak successfully.

PHASE ADVANCE BY SINGLE BPM

Using the transfer matrix between BPM(s1) and

BPM(s2) the transverse position (x) and momentum (x′ =
dx/ds) can be described by Eq.(3)

[

x(s2)
x′(s2)

]

=

[

m11 m12

m21 m22

] [

x(s1)
x′(s1)

]

(3)

where s is the length along the closed orbit from an ini-

tial point, mij is the component of the transfer matrix be-

tween s1 and s2. The momentum x′ can be determined as

following,

x′(s1) = −m11

m12

x(s1) +
1

m12

x(s2) (4)

x′(s2) =
m12m21 −m11m22

m12

x(s1) +
m22

m12

x(s2) (5)

Twiss parameters (αx, βx) can be calculated using mea-
sured (x, x′) as following [3],

αx =
− < x · x′ >

√

< x · x >< x′ · x′ > − < x · x′ >2 (6)

βx =
< x · x >

√

< x · x >< x′ · x′ > − < x · x′ >2
(7)

where < x · x′ > is variance defined as bellow,

x̄ =
1

N

N
∑

n=1

xn, x̄′ =
1

N

N
∑

n=1

x′

n (8)

< x · x′ >=
1

N

N
∑

n=1

(x̄− xn)(x̄′ − x′

n) (9)

Using the above Twiss parameters, phase space in phys-

ical coordinate is transformed to normalized coordinate as

following,

[

X
X ′

]

=

[

1/
√
βx 0

αx/
√
βx

√
βx

] [

x
x′

]

(10)

Figure 5 shows normalized phase space (using the same

data of Fig.2). In terms of single BPM, a revolution of

normalized phase space can be represented by Eq.(11).

[

Xn+1

X ′

n+1

]

=

[

cosΘx sinΘx

− sinΘx cosΘx

] [

Xn

X ′

n

]

(11)

where n is turn number and Θx is phase advance of one

revolution in the normalized coordinate.

When we define the vector ~Xn = (Xn−X0, X
′

n−X ′

0),
where (X0, X

′

0) is offset originated from COD+BPM error,

the decimal part of the tune can be calculated as following,

νx = θx/2π, θx = cos−1
~Xn · ~Xn+1

| ~Xn| · | ~Xn+1|
(12)

The relation of Θx and θx is,

Θx = 2π ·Nx + θx (13)

= 2π(Nx + νx) (14)

where Nx is integer part of the tune.

ν
x
 = θ

x
/2π
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Figure 4: Normalized phase space(230 turns). Red point

is 1st turn( ~X1) and green point is 2nd turn( ~X2). θx is the

angle between ~X1 and ~X2.

Advantage of this method is we can get the tune for each

single turn. Disadvantage is that it is model dependent.
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When determining x′ it is used the transfer matrix calcu-

lated from the expected values of Twiss parameters which

is used to preset the magnets. To get the better resolution of

θx it is required larger betatron amplitude than other meth-

ods. As shown in Fig. 6, the error of the obtained tune is

larger than the other methods.
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Figure 5: Variation of the tune obtained by the normalized

phase advance of single BPM. The average number and er-

ror(RMS) is shown in the graph.

FFT BY ALL BPMS IN THE RING

If there are enough number of BPMs to reconstruct the

complete orbit along the ring we can count the frequency

of the betatron oscillation. The equation of the transverse

motion along s-axis in physical coordinate is expressed as

following,

x(s) = a
√

βx(s) cos(ϕx(s) + b) + c(s) (15)

ϕx(s) =

∫ s

0

ds

βx(s)
(16)

where a, b are constant, c(s) is COD+BPM error and ϕx(s)
is phase advance along s-axis.

Figure 7-(a) shows the beam orbit reconstructed by 186

BPMs of J-PARC MR (using the same data of Fig.2).

When we define new coordinate,

X(s) =
x(s)− c(s)
√

βx(s)
(17)

Φx(s) =
ϕx(s)

ϕx(L)
(18)

where L is the length of closed orbit of one revolution.

Then Eq.(16) can be represented as following,

X(Φx) = a′ cos(2πQxΦx + b′) (19)

where a′, b′ are constant, Qx is the tune including integer

part. Figure 7-(b) shows the Normalized orbit along Φx(s).
FFT algorithm requires regular interval discrete data. Al-

though usually intervals of BPMs in the ring are not equiv-

alent. To make the data regular interval it is interpolated

by quadratic function. In the Fig. 7-(b) the points marked

purple triangle are the interpolated data.

Finally the data with regular interval points are trans-

formed by FFT with hann window. The result is shown in

Fig. 8. We can see the clear peak at Qx.

2nd Turn of Beam Orbit (Horizontal: Run39 Shot 481)
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Figure 6: (a) Horizontal orbit by s-axis. Blue circle points

are the BPM data. Green line is the expected orbit. (b) Nor-

malized orbit by Φx(s). Blue square points are the BPM

data, purple triangle points are interpolated points with reg-

ular interval.

FFT of 230 Turns of Normalized Horizontal Orbit (Run39 Shot 481)
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Figure 7: (a) FFT power spectrum of X(Φx). (b) Enlarged

view around the Qx. Obtained tune is shown in the graph.

The error is estimated by HWHM of the peak.

Advantage of this method is we can measure the integer

part of the tune and there is no ambiguity such as νx and

1 − νx. Disadvantage is that it is model dependent. Al-

though once the boundary condition of Φx(L) = 1 is satis-

fied the accuracy of the expected Twiss parameter is not so

required. This feature is the key point of this method. For

example the result of Qx = 22.3967± 0.0043 is consistent

with the values by model independent methods in spite of

presetting the tune ϕx(L)/2π = 22.40 at that time.
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