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Abstract 
Recent TE wave measurements of the electron cloud 

density (ECD) in the beampipe at Cesr-TA and DAΦNE 
have shown that, especially near cutoff, the microwave 
excitation takes place by coupling to a standing wave, 
rather than to a propagating TE mode. With the beampipe 
acting as a resonant cavity, the effect of the periodic 
electron cloud density is a modulation of the cavity's 
resonant frequency. As a result, the measured sidebands 
are a combination of amplitude, phase, and frequency 
modulation, as the periodic cloud density modulates this 
resonant frequency. The quality factor Q of the resonance 
will determine its response to transients in the electron 
cloud density, and the resulting effect on modulation 
sidebands. In order to estimate the peak electron cloud 
density and its spatial distribution, knowledge of the Q 
and the standing wave pattern need to be determined, 
either by experimental measurements or simulation codes. 
In this paper we analyze the dependence of the 
modulation sidebands on the electron cloud density in two 
different regimes, when the cloud rise/decay time is much 
longer, or much shorter than the filling time of the 
resonance. 

 

INTRODUCTION 
The fundamental principles of the TE wave technique 

for measuring the electron cloud density in particle 
accelerators have been laid out in several publications [1-
3]. In all those instances the received signal has been 
analyzed under the assumption that an electromagnetic 
wave, the beampipe’s fundamental mode, is propagating 
from the beam position monitor (BPM) used as an input 
coupler, to the BPM used as a receiver. The phase 
velocity of the propagating wave is affected by the 
electron cloud encountered during its passage and 
information about the cloud density is deducted by 
measuring the modulation index of the resulting phase 
modulation. 

Recent measurements on Cesr-TA [4] and DAΦNE [5] 
have shown that in many instances and especially at lower 
frequencies, the electromagnetic transmission between the 
two BPM’s takes place through coupling to a standing 
wave which is excited in a region of the vacuum chamber 
comprising them. 

In such case the analytical model to extract the electron 
cloud density from the spectrum of the received signal 
becomes more complex: Instead of just a phase 
modulation (PM), the changing electron cloud density 

also induces an amplitude modulation (AM) and a 
frequency modulation (FM). Furthermore, the standing 
wave quality factor Q0, compared to the electron cloud 
rise/decay times, establishes two different regimes 
depending on whether the electron cloud density changes 
much faster or much slower than the resonance time 
constant     

� 

τ = 2Q0 /ω 0 . 
In this paper we discuss how the electron cloud 

presence changes the standing wave resonant frequency 
and calculate the resulting modulation indexes with their 
dependence on the average cloud density. 

E-CLOUD INDUCED FREQUENCY SHIFT 
The effects of the presence of a low-energy electron 

plasma on the resonant frequency of a cavity, or of a 
standing wave, have been discussed in detail in [6]. 
Essentially, a uniform electron cloud distribution can be 
modeled as a dielectric with a frequency dependent 
relative permittivity εr given by 

    

� 

εr (ω ) ≈ 1−
ω p

2

ω 2    (1) 

where the plasma frequency ωp is related to the electron 
density per cubic meter ne by 

     
    

� 

ω p

2π
=

1
2π

e2

meε0
ne ≈ 9 ne   (2) 

In the absence of external magnetic fields and assuming 
that the electron cloud uniformly fills the volume of 
beampipe occupied by the standing wave, it is easy to 
show that the wave resonant frequency is shifted by 

     
    

� 

δω =
ω p

2

2ω 0
   (3) 

where ω0 is the resonant value in the absence of the cloud. 
Considering the resonance quality factor not dependent on 
the electron cloud is an excellent approximation with the 
cloud densities and energy spectra found in accelerators. 

The effect of such a shift can be easily understood by 
looking at Fig.1. An external excitation (our signal 
source) on resonance when there is no electron cloud, 
produces a response (our detected signal) at the same 
frequency and in phase with the excitation. If suddenly 
the resonant frequency is shifted, amplitude and phase of 
the response change. After a transient lasting for a time 
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interval of the order of 3τ, the response is well 
approximated by its asymptotic value: An oscillation at 
the excitation frequency, but with amplitude and phase 
given by 

   

    

� 

A1 =
Asβ inβout

ω1
2 −ω 0

2( )2
+
ω1

2ω 0
2

Q0
2

φ1 = tan−1 Q0
ω1

2 −ω 0
2

ω1ω 0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

  (4) 

where the betas are the input and output coupling factors 
and As is the excitation amplitude. The new resonance 
frequency ω1 can be written as   

� 

ω1 =ω 0 + δω . 
 

 
Figure 1: Amplitude and phase change of the response to 
a fixed frequency excitation caused by a shift in the 
resonant frequency. 

For the sake of simplicity we will assume that the drive 
frequency ω = ω 0, and include the coupling factors in the 
amplitude coefficient As. 

From Eq.(4) it is easy to understand the origin of AM 
and PM signals, in the form of modulation sidebands, on 
the detected waveform. Periodically changing ECD at the 
beam revolution frequency will modulate amplitude and 
phase of the waveform. 

To understand the source of the FM component we 
need to look at the expression of the transient in the 
received signal sR(t), when the ECD changes, shifting the 
resonance frequency: 

          

� 

sR (t) ≈ A1 sin ω 0t + φ1( ) − e−t /τ sin ω1t + φ1( )[ ] +

               + A0e−t /τ sin ω1t +ϕ( )
 (5) 

Assuming an instantaneous change of the resonant 
frequency from ω0 to ω1, ϕ is simply the phase at which 
this change took place, so that     

� 

sR (t = 0) = A0 sin(ϕ) . We 
will show that the frequency of such a signal as described 
in Eq.(5) shifts from roughly from ω1 to ω0 inducing an 
FM component too. 

AMPLITUDE MODULATION 
The maximum modulation depth in the received signal 

takes place when the ECD maintains its maximum value 
and minimum (assumed to be zero for simplicity) values 
for a time t equal to at least 3τ. In such case the amplitude 
of the received signal can settle at both its extreme A1 and 
A0 yielding the largest modulation index. When this 
condition is not verified, gap or bunch train too short, the 
oscillations in amplitude are smaller and the ECD will be 
underestimated. 

The amplitude modulation index can be calculated as: 

       

� 

kAM = 1−
A1

A0
   (6) 

In practical cases standing waves resonate between 
hundreds of MHz and the beampipe cutoff, usually 
between 1 and 2 GHz. Additionally   

� 

δω <<ω 0  and of the 
order of tens of MHz at most. The quality factors 
measured range from a few 100’s to 3000. Lower values 
are hard to measure and higher values are generally 
avoided in the accelerator design phase. With these values 
in mind and from Eq.(4), we can approximate A1 as 

    

� 

A1 ≈
AsQ0

ω0
2

1

1 + 4Q0
2 δω

2

ω 0
2

≈
A0

1 + 2Q0
2 δω

2

ω0
2

  (7) 

and from Eqs.(3) and (6) we can derive: 

      

� 

kAM ≈
Q0

2

2
ω p

4

ω 0
4 ≈ 3 ⋅103Q0

2 ne
2

f0
4   (8) 

where     

� 

f0 =ω 0 / 2π  

PHASE MODULATION 
Analogous considerations on the time scale of the cloud 
density changes apply to the phase modulation index. 
The maximum value of phase change for a given ECD is  

    

� 

kPM = φ1 −φ0 = φ1   (9) 

since we have assumed an excitation on resonance when 
no electron cloud is present. 
With the same approximations used in calculating kAM we 
obtain: 

    

� 

kPM ≈ Q0
ω p

2

ω 0
2 ≈ 81 ⋅Q0

ne

f0
2   (10) 

Comparing Eqs.(8) and (10) we can see that 

          

� 

kAM ≈
1
2

kPM
2    (11) 
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Therefore, for low values of the ECD (small modulation 
indexes) the AM component is smaller than the PM 
component. When the density increases the reverse is 
true. 

FREQUENCY MODULATION 
As we already discussed     

� 

sR (t >> τ ) = A1 sin(ω 0t + φ1)  so 
that it’s asymptotic oscillation frequency is ω0. Its 
maximum frequency deviation Δω is attained right after a 
change in ECD and then it damps down to zero if the 
ECD remains constant. The frequency modulation index 

        

� 

kFM =
Δω
ω FM

   (12) 

also depends on the frequency of the ECD changes ωFM, 
usually equal to the beam revolution frequency ωrev, or 
multiples of it when the fill contains particular 
symmetries. 

Once again we assume small frequency deviations δω 
and can rewrite Eq.(5) as 

    

� 

sR (t) ≈ 2A1 cos ω 0 +
δω
2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ t + φ1

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ sin

δω
2

t
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
+

               + A0 sin ω1t +ϕ( )
 (13) 

when t→0. In such conditions Eq.(13) becomes 

    

� 

sR (t) ≈ 2A1
δω
2

t cos ω 0 +
δω
2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ t + τδω

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ +

               + A0 sin ω 0 + δω( )t +ϕ[ ]  

(14) 

The amplitude of the second term in the RHS of 
Eq.(14) is predominant regardless of any particular value 
of ϕ, which can be defined only for a step change in 
frequency, besides. The maximum frequency deviation of 
the received signal is therefore 

      

� 

kFM ≈
δω
ω rev

=
ω p

2

2ω0ω rev
≈ 40

ne
f0 f rev

 (15) 

From Eqs.(10) and (15), the ratio 

    

� 

kPM
kFM

≈ 2Q0
f rev
f0   

 (16) 

shows us that for small rings the PM component is still 
predominant, while for longer rings the FM component 
can become larger. 

CONCLUSIONS 
In this paper we have discussed how the electron cloud 

presence causes standing waves excited in an accelerator 
vacuum chamber to shift their frequency by an amount 
proportional to the cloud density. We have shown that this 
frequency shift induces simultaneous amplitude, phase, 
and frequency modulations on a signal transmitted 
between two points in the accelerator by means of 
coupling to the standing wave. We have calculated the 
modulation indexes for those modulations as a function of 
the electron cloud density when the transmitted signal is a 
continuous wave at the unperturbed resonant frequency 
and discussed the relative magnitude of those modulation 
indexes. Our results show that the phase modulation is 
predominant for smaller cloud densities and the amplitude 
modulation component becomes larger as the density 
increases. Frequency modulation of the signal assumes 
preponderance over the other modulations for larger 
machines, if the beam pattern doesn’t contain too many 
symmetries. 
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