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Abstract 

The linac-synchrotron-system of the Heidelberg Ion 
Beam Therapy Centre (HIT) [1] routinely delivers pencil 
beams to the dose delivering raster scanning devices at 3 
treatment rooms, including the worldwide first scanning 
ion gantry and 1 experimental cave. At HIT the quality-
assured library of pencil beam parameters covers roughly 
100.000 combinations of the ion, energy, intensity and 
beam size. Each patient-specific treatment plan defines a 
subset of these pencil beams being subsequently 
requested during the dose delivery. Aiming at shortened 
irradiation times an upgrade program making heavy use 
of feed-back mechanisms is under way. Driven by patient-
specific data out of the scanning beam dose delivery 
process central synchrotron components are coupled to 
the therapy control system in order to tailor the beam 
characteristics in real-time to the clinical requirements. 
The paper will discuss the functional upgrades and report 
about the impact on the medical application at HIT. 

INTRODUCTION 

The Heidelberg Ion Beam Therapy Centre is the first 
European particle therapy facility using protons as well as 
heavier ions to treat deep-seated tumours.  It is a hospital-
based facility being designed to treat more than 1.000 
patients per year and to conduct a broad research and 
development programme in parallel. HIT fully relies on 
active beam scanning dose delivery, i.e. active energy 
variation in the synchrotron as well as variable beam 
intensity and focussing on a cycle-by-cycle basis. The 
synchrotron and the high-energy beam transport system 
are used to produce a library of highly focussed pencil-
beams. This library covers about 100.000 beam parameter 
combinations (4 ions species, 250 energies per ion, 15 
intensity steps and 6 spot sizes). It is shared between the 
accelerator control system and the treatment planning 
platform. 3D dose delivery is performed using the raster 
scanning technology [2]. This method is based on the 
virtual dissection of the target volume into iso-energy 
slices. In the frame of the treatment planning process each 
slice is subdivided into voxels that generate a beam path 
being scanned using a subset of the pencil beam library. 
At each raster point a pre-calculated amount of stopping 
ions is deposited. The variation in dose per raster point 
can be as large 1:100. In order to scan the iso-energy 
slices as fast as possible and to meet the dose quality 
requirement of 2.5% the extracted intensity distribution 
from the synchrotron (spill structure) is an essential 
parameter. Stepping in depth through the stacked iso-

energy slices is a time consuming process as the 
synchrotron has to be filled, ramped up and down besides 
the extraction phase which is used to scan the tumour. The 
HIT synchrotron operation can be optimized prior to and 
during beam extraction for the patient treatment. 
Magnetic field feed-back (B-train) and dynamic spill 
shaping have the potential to significantly reduce the 
irradiation duration. 

PERFORMANCE CONSIDERATIONS 

Particle therapy centres like HIT represent a major 
investment and typically have to meet the requirements of 
a business plan. One crucial design parameter is the 
number of treatment rooms being served by the 
accelerator system. Three to five rooms are considered to 
be reasonable in this context. For clinical use HIT 
comprises two horizontally-fixed treatment rooms and the 
worldwide first scanning ion gantry. The latter will go 
clinical in 2012. Obviously the ratio of the preparation 
time to the irradiation time of an average patient needs to 
be larger than 2 in order to avoid that fully prepared 
patients have to wait for a beamtime slot and the total 
patient throughput would be limited. Shorter irradiation 
times allow for higher patient numbers and the stress for 
the individual patient due to the uncomfortable 
immobilization during the treatment could be reduced. 

 
As the scanning ion gantry at HIT will be labelled as a 

medical device in summer 2012 the three-room operation 
mode will require shorter irradiation times, i.e. less and 
shorter synchrotron cycles per treatment field, to realize a 
smooth clinical workflow and a sufficient patient 
throughput.  To meet the requirements of the upcoming 
clinical all-out operation an upgrade programme was 
launched that focussed on issues: 

 
 Accelerator controls performance  

 
 Magnetic field feed-back for the synchrotron 

dipoles and quads 
 

 Dynamic spill structure shaping 

ACCELERATOR CONTROL SYSTEM 

Facing the challenging phase space of HIT’s pencil- 
beam library the real-time management of the process 
data for the numerous devices of the HIT accelerator 
system requires efficient strategies to request and 
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