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Abstract

A usual and effective way to realize closed-loop con-

trollers is to use cascaded SISO feedback and to rely on

some kind of linear PID (proportional, integral, derivative)

structure often with parameters adjusted manually. Such a

control may not reach optimal performance if the system is

coupled or non-linear. Regarding intense beams, longitudi-

nal beam loading can be compensated by detuning. But the

coupling between phase and amplitude (or I and Q compo-

nent) highly depends on the tuning, that is on the resonant

frequency of the cavity. It is derived that cavity and beam

dynamics show bi-linear nature, i.e. belong to a well inves-

tigated class of non-linear systems with appropriate control

strategies available [1, 4].

Different controller designs are compared. The perfor-

mance evaluation is based on macro-particle tracking sim-

ulations.

Notations

Small deviations from the steady-state sine and cosine

components of signals are denoted by s and c respectively,

b, v, i refer to the beam current, gap voltage and current

respectively. All other used symbols and parameters are

summarized in Table 1.

MODEL

Bi-linear Systems

Dynamical systems are often described by systems of n
differential equations of first order called state space rep-

resentation. A bi-linear system can be described by

ẋ(t) = Ax(t) +Bu(t) +
∑m

j=1
uj(t)Njx(t). (1)

Beam Dynamics

Longitudinal beam dynamics are often detached from

the cavity servo control presented here, by the architec-

ture of the (overall feedback) system that is split into a lo-

cal cavity feedback and a global longitudinal beam feed-

back loop due to multiple cavities and their spatial sep-

aration. Only the stationary case is considered as this

paragraph is just included to show the impact of bi-linear

systems on longitudinal beam dynamics. The dynamics

of a single particle exposed to a sinusoidal voltage (3)

are given by ϕ̇ = aE, Ė = bv(t) with the linear syn-

chrotron frequency ωs =
√

−abV̂ . The dynamics of
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a bunched beam are approximately described using the

I/Q-components of the fundamental of the beam current

ib,1(t) = Îb,1 ((1 + cb(t)) cos(ωt) + sb(t) sin(ωt)).
For infinitesimal small bunches it follows

s̈b + ω2
ssb = −ω2

s (cv(1 + cb) + svsb) and

c̈b + (2ωs)
2cb = ω2

s (cvsb − 2svcb)

Linearization around zeros of this bi-linear system yields

the well-known linear dipole (and quadrupole) dynamics

s̈b + ω2
ssb = −ω2

scv (and c̈b + (2ωs)
2cb = −2ω2

ssv · 0).

Cavity Dynamics

With σ−1 = 2RC and ω−2

R (t) = L(t)C the differential

equation of the resonator shown in Fig. 1 is given by

ω−2

R (t)v̇(t) + ω−2

R (t)2σv(t) +
∫

v(t)dt =

= ω−2

R (t)2σRi(t) (2)

Figure 1: System layout with equivalent lumped element

RLC circuit for the cavity.

Inserting the I/Q modulated signals

i(t)= Î
(

(1 + si(t)) sin(ωt) +
(

ci(t)− ω2

R
−ω2

2σω

)

cos(ωt)
)

v(t)= V̂ ((1 + sv(t)) sin(ωt) + cv(t) cos(ωt)) (3)

and the corresponding derivatives into the differential

Eq. (2) yields Eqns. (4). These two differential equations

are of 2nd order in the voltage, resulting in a minimal re-

alization of 4th order. With the states xi and inputs ui as

denoted in Eqns. (4) the system can be written in the bi-

linear form (1).

It can be seen that even when the cavity is in resonance,

i.e. beam loading is not significant or not compensated by

detuning, amplitude and phase loop are slightly coupled

during transient processes dependent on the quality factor

Q = ωR/2/σ of the cavity.
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s̈v(t)= −2σṡv(t)− (ω2
R(t)− ω2)sv(t) + 2ωċv(t) + 2σωcv(t)

x4

− (ω2
R(t)− ω2

R

u3

) + 2 ω̇R(t)
ωR(t)

(ṡv(t) + 2σsv(t)− ωcv(t)− 2σsi(t)

ω2
R(t)x1

)

+2σ (ṡi(t)− ωci(t)

u2

)

c̈v(t) = −2σċv(t)− (ω2
R(t)− ω2)cv(t)− 2ωṡv(t)− 2σωsv(t)

x3

+ 2 ω̇R(t)
ωR(t)

(

ċv(t) + 2σcv(t) + ωsv(t)− 2σci(t)−
ω2

R
(t)−ω2

R

ω

ω2
R(t)x2

)

+2ωR(t)
ω

ω̇R(t) + 2σ (ċi(t) + ωsi(t)

u1

) (4)

SYSTEM LAYOUT

I/Q-Detectors

The measured values sm(t) and cm(t) for the states

sv(t) and cv(t) are obtained by multiplying the gap volt-

age v(t) with reference signals, 2 sin(ωt) and 2 cos(ωt)
respectively, followed by Bessel-low-pass-filters with the

edge frequency ωd.

Actuators

The dynamics of the amplifier (tetrode) for the gen-

erator current i(t) driving the gap voltage v(t) can be

included in the RLC circuit. The amplifier (transis-

tor) for the bias current is modeled as a PT1 element,

i̇v(t) + faiv(t) = faua(t). Mainly based on [2] the re-

lationship between the squared eigenfrequency and the

bias current iv(t) used for the tuning of the cavity was

found to be linear or rather affine in good approxima-

tion, e.g. ω2

R(t) = 0.5 · 1011 1

As2
iv(t) + C as in [2]. This

omission of nonlinear characteristics facilitates analytical

controller design. With u3 := ω2

R(t)− ω2

R this results in

u̇3 + fau3 = Caua.

Overall System

Because of the dynamics of the amplifier for the bias cur-

rent the new input ua replaces u3 which becomes an inter-

nal state and the overall system dynamics are no more bi-

linear but still input affine. Combining all the subsystems,

the dynamics can be written in the form ẋ = A(x)x+Bu,

used for the setup of the MIMO state controller and ob-

server. The model can also be used to analyze the stability

margins of existing servo loops.

CLOSED-LOOP FEEDBACK

The design of the MIMO controller is based on Eqns. (4),

the design of the SISO PI-controllers on the simplified

decoupled cavity dynamics ṡv(t) + σsv(t) = σsi(t),
ċv(t) + σcv(t) = σci(t)− u3/2/ω, commonly used when

considering stationary beam loading (e.g. in [3]).

MIMO Optimal Control

Let Q be a symmetric, positive semi-definite matrix and

R be positive definite and symmetric.

A necessary condition for the (quadratic) cost

function J = 1

2

∞
∫

0

xTQx+ uTRu dt to be minimal

is ∂H(x,u, λ)/∂u|u=u0
= 0 with the Hamiltonian

H(x,u, λ) = 1

2
(xTQx+ uTRu) + λT(A(x)x +Bu)v

and λ ∈ R
n. This yields u0 = −R−1BTλ.

The Hamilton-Jacobi-Bellman equation gives the suffi-

cient condition ∂V/∂t+H(x,u0, ∂V/∂x) = 0.

Due to the infinite upper bound of the cost integral, the

solution V does not depend on time, i.e. ∂V/∂t = 0.

Under the condition that ∂P(x)x/∂x is symmetric given

in [1] the form ∂V/∂x = P(x)x is permitted. This results

in 1

2

(

xTQx+ (−R−1BTP(x)x)TR(−R−1BTP(x)x)
)

+(P(x)x)T(A(x)x + B(−R−1BTP(x)x)) = 0 or

PT(x)BR−1BTP(x)− 2P(x)TA(x) = Q, a Riccati-like

equation often used in control theory. For bi-linear sys-

tems the optimal control u0(x) = −K(x)x with K(x) =
R−1BTP(x) follows from the Riccati equation with a

symmetric matrix P(x). The feedback is calculated on the

assumption that the loss of bi-linearity does not affect the

optimality of the Riccati-controller too much.

Extended Kalman Filter

An observer is used to determine the not measurable in-

ner states x of a system by the simultaneous use of a model

of the system driven by the same input. The extended

Kalman filter is the most frequently used observer for non-

linear systems. The matrix L, used to feed back the dif-

ference between the estimated output ỹ and the measured

output y, i.e. ˙̃x = Ãx̃+ B̃u+ L̃(ỹ− y), is determined in

the same way as the matrix K of the optimal state feedback.

SISO PI-Controllers

With observer the eigenvalues of the amplitude loop

can be placed freely on λ1/2 = λ̃ and the corresponding

gains are KP,s = 2λ̃/σ + 1 and KI,s = −λ̃2/σ. If the

phase loop is designed equally due to the same dynamics,

a good value for the proportional gain of the bias loop is

KP,ω = σ(2λ̃
√

λ̃(2fa + λ̃)− 2λ̃2 − 2λ̃fa − f2
a )/(8Caλ̃),

whereas for the integral gain KI,s a simple analytical ex-

pression could not be found.

Without observer the dynamics of the I/Q detectors

have to be considered in the control setup. Together with

the simplified cavity dynamics and the PI-feedback si(t) =
KP,ssv(t)+KI,s

∫

sv(t)dt the characteristic polynomial of

the closed amplitude loop is (λ2+
√
3ωdλ+ω2

d
)(λ+σ)λ−

σω2

d
(KP,sλ+KI,s)

Where by choosing KP,s = −ωd/
√
27/σ and KI,s =

−ωd/
√
27 the zeros or eigenvalues of the system are

λ1/2/3 = −ωd/
√
3 and λ4 = −σ.
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Figure 2: Root-locus plots of the bias loop for

λ̃ = −ωd/
√
3 with observer (left) and of the

phase/amplitude loop w/o observer (right): variable

Kp, Ki, λ̃

SIMULATIONS AND CONCLUSIONS

It is shown, that separate PI-controllers cannot yield op-

timal performance if the cavity is strongly detuned. There-

fore macro particle tracking is performed inspired by a sce-

nario where four batches from the SIS18 each consisting of

two bunches a 5·1011 particles are injected in sequence into

the SIS100 of the FAIR-Project at GSI. The simulations are

based on the SIS100 parameters of FAIR (www.gsi.de)

with similar cavities as in the SIS18.

After the injections at t = 5s, when the detuning is max-

imal, the amplitude of the voltage is abruptly reduced to

show the coupling of the amplitude loop.

Table 1: Summary of Parameters

Name Symbol Value Unit

Synchrotron

Harmonic Number h 10

RF-Frequency ω 2π·2.4 MH

Transition Energy γt 16.8

Bending Radius 50 m

Circumference 1083.6 m

Duty Cycle SIS18 1 s

Cavity

Resistance R 5 kΩ
Capacitance C 740 pF

(Half) Bandwidth σ 135 kHz

Quality Factor Q 56

Voltage Amplitude V̂ 1.88 kV

Actuator (Bias Current)

Response Time f−1
a 1 ms

Gain Ca 5·1013

Detectors (Bessel Filter)

Cutoff Frequency ωd 100 kHz

Beam

Uranium 28+

Bunch Length σt 0.27 µs

σϕ 119 ◦

Energy per Nucleon Wkin 1 GeV/u

Synchrotron Frequency fsyn 56.5 Hz

MIMO Optimal Control

The best results were obtained with the MIMO Optimal

control shown in Figure 3 (left).
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Figure 3: Waterfall plot of the beam, controller inputs

u1 and u2 and detuning u3/2/σ/ω with estimated ci for

the MIMO control (left) and the observer-based SISO PI-

controllers (right).

Extended Kalman Filter

The design of a Kalman observer may need some

successive optimization, but its realization is quite safe,

because it could be (extensively) tested in parallel to a

running closed-loop system. Its use may also provide

additional insight into the dynamical processes.

SISO PI-Controllers

With observer at strong detuning the bias loop starts

to oscillate at a high frequency, but with appropriate mean

value. Nevertheless the performance of the amplitude is

quite bad, when the cavity is detuned.

Without observer the optimal gains of the bias control

could not be determined analytically. Therefore different

pole configurations were tested. The best results were ob-

tained for the poles marked in Figure 2. The beam could

be stabilized up to a total of less than 1 · 1012 particles.

Then the bias loop became exponentially instable. Lower

controller gains postpone this problem at the expense of the

beam quality.
OUTLOOK

A dead time of about 1 µs is included in the simulations

but may also be included in the design procedure. An ana-

lytical roof of the optimality and an explicit expression for

the controller gain K for any or almost any cost function

would be nice.
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