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Abstract

LLRF4 is a successfully designed FPGA based low noise

signal processing board. The board has been used in several

accelerators as a low level RF controller and timing system

controller. The complexity of maintaining and supporting

different versions of software and firmware increase as the

number of application increases. This paper describes our

attempt to abstract the software and firmware layer of sup-

port for LLRF4-based systems. For the software side, the

infrastructure includes an FLTK based GUI, as well as pro-

viding an EPICS IOC driver. From the firmware side, the

infrastructure separates board hardware dependent drivers,

the common algorithm implementation, and project spe-

cific DSP. We also reserve the capability to expand to a

UDP-based communication protocol for the next genera-

tion LLRF board.

INTRODUCTION
LLRF4 was originally designed in the context of ILC,

expanding on ideas developed for the SNS LLRF system

in 2005 [1,2]. The hardware design has been stable for sev-

eral years. The board has demonstrated low phase noise

and adequate data processing capability for a variety of

applications. Known applications include accelerator low

level RF control and timing system control. A software and

firmware design platform is developing for LLRF4 board to

make it easier to support different applications.

Software runs on the host computer, and the firmware

runs on the LLRF4 board, as shown in Figure 1. The board

communicates with the host computer through a Hi-speed

USB 2.0 connection. A common register map file is used

on both sides to keep the communication consistent.
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Figure 1: Software and firmware structure.
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SOFTWARE STRUCTURE
The software side code contains three layers:

• The bottom layer is the board-dependent layer and im-

plements the USB communication. The libusb li-

brary and the usrp usb library wrap all the hard-

ware dependencies and provide a transparent data

communication interface.

• The intermediate layer receives data from the USB

port and decodes the data encoded by its analog in-

termediate layer in the FPGA firmware. The output

of this layer provides fundamental graphical user in-

terface support, which consists of one development

application interface, and two machine generated de-

bugging interfaces. The first debugging interface is

a FLTK-based interface called xgui, the second de-

bugging interface is an EPICS IOC driver and a EDM

screen.

• The top layer in the software side are user GUIs: end

users need to develop the interface for daily operation

and diagnostics. Some critical system level control

registers should be hidden in this layer.

Software Class Description
The bottom and intermediate layers of the software side

are coded in c++. The class design is shown in Figure 2.

The bottom layer is the class “usbio” which deal with

the hardware read and write by calling usrp basic functions

and further calling libusb functions. This hardware read

and write are run in a separate thread.

In order to match the usb read and memory map process

speed, a bigger memory contain multiple pages are used,

and a separate thread is used to assign the memory to be

read, to be process. This is handled by rx buf class.

The intermediate layer contains the mem map class and

an application interface “proj”.

For control data from host to board, the application in-

terface direct call the methods in usbio class and write to

the hardware.

For the data acquired from board to host, the data is pro-

cessed in the mem map according to a the defined data

structure. The application interface prepare register values

and waveforms ready for upper layer to display.

The usb io is not always read from the start point of a

“page”(will be explain later), the memory to be process

has to be at least two usb read pages. In the memory map

process, we need to check the integrity of the page before

further process.

The results of memory map process are separate reg-

isters and waveforms. Each project have it’s own list of
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Figure 2: Software class description.

registers and waveforms, which will be defined in the hu-

man readable register map file and convert into a piece of

c++ code and included in the memory map class. Also a

set special functions can be defined in project space called

user postprocessor and user postprocessor caller. These

functions are used to allow user define their own post pro-

cessor to process the registers and waveforms in the mem-

ory maps and output them to an other registers or wave-

forms. All the internal elements of the memmap class are

accessible from the user postprocessor.

The application interface wrap the usbio, rx buf and

mem map together, it open a thread for each of them. A

single call of start usb process will start all three threads.

Other functions in the application interface are update

value for each kind of data type and request hardware reg-

ister writes.

Two kinds of debug GUI are provided with the software

structure. One is a FLTK [3] based graphical user interface,

called xgui. The other is an EPICS driver based on Asyn-

Driver together with an edm screen. Both GUIs are just

a list of the widgets based on the register map provided

through the application interface.

FIRMWARE STRUCTURE
The firmware side can be divided in to pieces: the USB

interface chip firmware and the FPGA firmware. The USB

interface chip (CY7C68013A) firmware and corresponding

software usrp usb library are inherited from the GNU radio

project [4] with some modifications (Figure 3).

The FPGA firmware code also contains three layers:
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Figure 3: Firmware structure.

• The bottom layer is the board-dependent layer. In this

layer, we implement all the hardware driver. The USB

interface is converted into a local bus to implement

data IO. The power regulator, thermometer and fre-

quency divider drivers are run on USB clock domain,

so they do not rely on the DSP implementation. The

slow ADC and slow DAC can be run on either USB

time domain or DSP time domain.

• The intermediate layer is the data structure designed

for the host computer to decode. The LLRF4 commu-

nicate with the computer through USB port. The USB

data structure we are using now is described below.

• The top layer is a hardware-independent DSP module

implement the APEX-specific control algorithm.

USB Data Structure
The bottom layer of software and firmware provide the

transparent data communication. The intermediate layer

encodes and decodes the USB data structure. The data for-
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A page is the unit of data decoding, contains 256 lines
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Figure 4: USB data structure.

mat used is illustrated in Figure 4. All the data cross do-

main happen here.

The unit of USB communication is 16-bit words. A data

line contains 16 words, the first 15 are filled with waveform

data, the upper byte of the last word is used for register

data, and the lower byte of the last word is the line counter

of the page. A page is the unit for the host side USB read

and process. A page contains 256 lines, and the USB read

page does not necessarily start from the line index 0x00.

The software then needs to handle the difference of USB

read page, find out the start line of each page, and only then

send it to process. A chapter is the unit for a full snapshot

of FPGA status including a mirror of control registers. A

chapter contains 4 pages, Each line has 8 bits for register,

so each page has 1024 bits for register and each chapter has

4096 bits for register. To index the register, we use the bit

address of this 4096 bits to accommodate different register

widths.

In the FPGA firmware, we use a counter address in the

data stream. Bit 0 to bit 3 of that counter are the word index

in a line, bit 4 to bit 11 are the line index in a page, bit 12

to bit 13 are the page index in a chapter, bit 14 and above

are the chapter counter.

The register in line 0x0x and 0xFx area of each page

are used for the page information, including the page ID,

checksum, firmware version information, etc. The rest of

area is left for the user to define. Again the user register

map is defined in the register map file which is used in both

software and firmware as mentioned earlier.

SUMMARY AND FUTURE PLAN
We have developed a software and firmware develop-

ment platform for LLRF4 board based system. Both soft-

ware and firmware are separated into different independent

layers.

This infrastructure is applied to some of our on-

going development projects, including APEX [5] and

SPX@APS [6]. We also plan to merge some of the pre-

vious developed firmware to this platform to increase the

maintainability.

Furthermore, we plan to expend this platform to accom-

modate other boards and other communication protocols,

i.e. UDP. and hopefully use this same platform for other

boards we are developing.
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