# **RF DESIGN OF ESS RFQ**

O. Piquet, M. Desmons, A.C. France, O. Delferrière, CEA, IRFU, Gif-sur-Yvette, France

#### Abstract

The low energy front end of ESS is based on a 352 MHz, 5-m long Radiofrequency Quadrupole (RFQ) cavity. It will accelerate and bunch proton beams from 75 keV to 3 MeV. The beam current is 50 mA (75 mA as an upgrade scenario) for 4% duty cycle. A complete RF analysis of the ESS RFQ has been performed using 3D RF simulating codes and a RFQ 4-wire transmission line model. Proposed RFQ is a 4-vane structure where 2D cross-section is optimized for lower power dissipation, while featuring simple geometrical shape suitable for easy machining. RF calculations are performed for the whole RFQ, and mainly for the following parts: end circuits, vacuum port, tuners and RF coupling ports. Power losses are particularly calculated in order to achieve future thermo-mechanical calculations.

## **CAVITY DESIGN**

The RFQ cross-section is defined in Fig. 1. Four geometrical parameters are variable vs. abscissa z along the RFQ:  $r_0$ ,  $x_{J5}$ ,  $x_{J6}$  and  $y_{J6}$ . Axis to vane-tip distance  $r_0(z)$  is an input parameter resulting from beam dynamics analysis;  $x_{J6}(z) = y_{J6}(z)$  is designed to achieve specified voltage profile (Fig. 2) and a 346 MHz accelerating mode resonance frequency. In this way, slug tuners are dedicated to compensation of voltage errors resulting from construction tolerances only.









Figure 3: The 4-wire transmission line model (TLM).



Figure 4: Parallel inductance (H.m) vs. abscissa (m).



Figure 5: Parallel inductance (H.m) vs. abscissa (m) .



Figure 6: Parallel capacitance (F/m) vs. abscissa (m).

Resonance frequency after tuning will be 352.2 MHz. Electrical parameters needed for tuning analysis (using 4-

04 Hadron Accelerators A08 Linear Accelerators wire Transmission Line Model TLM, see Fig. 3) are derived from Comsol® 2D simulations, and shown in Fig. 4 (parallel inductance), Fig. 5 (parallel capacitance) and Fig. 6 (diagonal capacitance).

#### **STABILITY ANALYSIS**

The sensitivity of RFQ to quadrupole-like and dipolelike perturbations is described by the norms of dimensionless error impulse functions  $||h_{O0,X}||$ , X = Q, S or T (Q<sub>0</sub> is the accelerating mode). Each  $h_{O0,X}(z,z_0)$  function relates relative voltage perturbation  $\Delta V_{O0,X}(z)/V_{O0,O}(z)$  to originating "impulse" perturbation  $\delta(z-z_0)\Delta C_{XQ}/C(z)$ located in  $z_0$ . The norms given by  $||h_{O0,X}|| = \sup_z \sup_{z_0} u_{z_0}$  $|h_{00 X}(z,z_0)|$  primarily depend on frequency, RFQ length and end-circuits s-parameters defined by  $dU_x(a)/dz =$  $-s_xU_x(a)$ ,  $dU_x(b)/dz = +s_xU_x(b)$  (z = a, b are RFO ends abscissa). In the present case of un-segmented RFQ,  $\|\mathbf{h}_{OOO}\|$  cannot be that much adjusted since  $s_0 = 0$  is required ( $||\mathbf{h}_{O0,O}|| \approx 97$ ). A smooth optimum  $32 \le ||\mathbf{h}_{O0,S/T}||$  $\leq 80$  is found for  $-2 \leq s_{S/T} \leq 0$  V/m/V. End-circuits are designed (Fig. 7) to satisfy both  $s_0$  and  $s_{S/T}$  requirements with proper choices of quadrupole rods lengths (28 and 31 mm) [1] and vane undercuts (23 and 25 mm). Resulting  $||h_{O0,S/T}||$  is 39, close to optimum. Modes closer to  $Q_0$ accelerating mode are Q<sub>1</sub> (+1.47 MHz), D<sub>2</sub> (-5.2 MHz) and D<sub>3</sub> (+2.6 MHz).



Figure 7: A view of E field amplitude at RFQ input.

#### TUNING

A set of 4×15 slugs (80 mm dia., 334 mm axes spacing) will be available for tuning. Tuner 2D inductance slopes required by TLM are derived from Comsol<sup>®</sup> 3D simulations; they exhibit a linear behavior up to +30 mm position inside cavity, and are roughly independent of tuner location (Fig. 8). Tuner spacing is related to RFQ tuning process. Bead-pull measurements are used to sense longitudinal magnetic field  $H_z(x_0,y_0,z)$  vs. abscissa z at some transverse location  $\{x_0, y_0\}$  in RFQ quadrants, and a conversion factor  $\kappa(z) = V(z)/H_z(x_0, y_0, z)$  is applied to recover the value of inter-vane voltage V(z). 3D simulations show that voltage accuracy is better than 1% if field samples are located at least at 82 mm from tuner axes. The resulting system of T = 15 tuner and S = 30sampling locations is optimum in the sense that spurious spectral components of inductance eigen-functions (shown in Fig. 9) fall in rejection bandwidth of linear filter-bank used for voltage reconstruction (Fig. 10).

## **04 Hadron Accelerators**



Figure 8: Left: 2D inductance vs. tuner position and tuner location (color-coded); right: inductance slope vs. tuner location (same color code). Commons Attribution 3.0 (CC BY

| ᢟᡊᡙᡗᡙᡀᡙᡀᡙᡯᠾ᠇ᡯᠥᢦ᠆ᢦ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ᢟᡊᡙᡗᡀ᠘ᡁᡗᡀ᠕ᡁ᠕᠂              | ᢟᡊᡙᡗᡙ᠘ᡁᡗᡀ᠕ᡙ᠕ᡙ᠕᠊ᠬ                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                                        |
| ᢟᡰ᠋᠋᠆ᡗ᠊᠋᠆᠆᠆᠆᠆᠆᠆᠆᠆᠆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ᢟ᠋ᠴᠾᢇᡗ᠆᠆ᡁ᠆ᡗ᠆ᡁ᠆ᡗ᠆ᡁ          | ┉╨┰┹╍┉╝╘┓┍╨┰╍┸┓┍╨╖                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 52 1 4 1 7 1 4 1 1 1 4 1   |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                                        |
| °°° I was a stand w                                                                                                                                                                                                                     | <sup>sun</sup>             | $\cdots$                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | °                          |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                                        |
| ᡁᢅᢣ᠋᠘᠘ᡁ᠇᠋᠆ᡁ᠆᠆᠘᠘᠆ᡁ᠆ᠰ᠕᠆᠕                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ᡖᡀ᠘᠘ᡁᡓᠧ᠘᠘ᡯᡙ᠆ᡔ᠘᠘ᡐ᠆ᡁ᠆ᠰ᠘ᠰᡙ    | ╢╌╙┙╘┑┍┅┙╘┍╍╗╘╍╌╝╘┉╌╢╴                 |
| المرجب المحرجي المرجب الم                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                                        |
| $\cdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |                                        |
| المرجع التالي المرجع التالي الترجي التالي الترجي الت | المرجب البالي ويتعال الروق | المروحيات المروحية التاليجي            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                                        |
| ฦ๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ᠾ᠊ᠣ᠆ᡣ᠋ᡰᡊ᠊᠋᠆᠆᠆᠆᠆ᡥ᠕᠆ᠬ᠆ᢦ      | ~~^^ <u>~</u> ~~                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                                        |
| $\[ \] \] \] \] \] \] \] \] \] \] \] \] \] $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\cdots$                   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | °                          |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                                        |
| 0 05 1 15 2 25 3 35 4 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 05 1 15 2 25 3 35 4 45   |                                        |

Figure 9: Inductance eigen-functions; Q, S and T subsets shown from left to right.



Figure 10: Left: spectral components of Q eigenfunctions. Right: transmittance of reconstructing filterbank. Spurious components in the red box are rejected.

#### **RF POWER COUPLING**

RF power is coupled by the loop sketched out in Fig. 11; coupled power may be adjusted from 234 to 469 kW as the loop is rotated from  $45^{\circ}$  to  $0^{\circ}$  about its axis. Relative inter-vane voltage perturbation induced by <sup>[]</sup> the loop remains smaller than  $1.8 \ 10^{-3}$ . The loop could be  $\Im$ in principle located either in place of a tuner or at mid- $\frac{1}{1}$ point between two adjacent tuners. The first possibility implies that the loop would be in itself a tuner, whose position inside/outside cavity should be adjusted at each a tuning iteration, with the undesired effect of varying  $\cong$ coupling coefficient in the same time. The second  $\overline{a}$ possibility is then highly preferable. HFSS 3D simulations show that  $V/H_z$  perturbation induced by a loop located  $\ge$ 

ommons

between two tuners in 0 (resp. +35) mm position exceeds 1% in a 28 (resp. 48) mm interval centered about loop axis, hence a wide space is left for field samples on both sides of loop (Fig. 12).



Figure 11: Coupling loop located between two tuners.



Figure 12:  $V/H_z$  perturbation induced by a loop in 0° (left) and 45° (right) position, and located between two tuners in +35 mm position, is < 1% in red boxes.

### **TUNER POSITION RANGE**

Tuner position limits required to compensate for mechanical construction errors are derived from intervane capacitance errors. Tolerances on electrodes tips are defined by the two numbers t and  $\delta$ :

- centre of curvature of each electrode tip is located in a square with side 2t, centered at its theoretical location;

- electrode tip radius error is bounded by  $\pm \delta$ .

Parameters t and  $\delta$  are varied in the intervals [40,60] and [20,40]  $\mu$ m respectively. Each pair {t, $\delta$ } defines a capacitance relative error volume as the one shown in Fig. 13. Tuner position limits are then calculated according method described in [2], assuming constant inductance slope. A 30% safety margin is then added on either side of range, and results are corrected according to actual inductance slope. As shown in Table 1, tuner position limits approximately remain in a [-10,+30] mm interval provided that t+ $\delta$  is lower than 80  $\mu$ m.



Figure 13: Capacitance relative error volume, in  $\{QQ,SQ,TQ\}$  axes (t = 50 µm,  $\delta$  = 30 µm).

Table 1: Tuner position limits (in mm) vs. t,  $\delta$ .

|         | t=40 μm | t=50 μm | t=60 μm |
|---------|---------|---------|---------|
| S-20    | +26.8   | +29.3   | +31.9   |
| o=20 μm | -3.1    | -6.3    | -10.4   |
| S-20    | +29.5   | +32.1   | +34.7   |
| o=30 μm | -6.5    | -10.7   | -16.7   |
| S-10    | +32.3   | +34.8   | Ø       |
| 0–40 μm | -11.0   | -17.1   | Ø       |

#### VACUUM PORTS

ESS RFQ vacuum ports are in fact identical to those of Linac4 RFQ. Accurate penetration depth is determined experimentally prior to braze [3], in order to alleviate possible numerical simulation uncertainties.

#### STABILITY UNDER OPERATION

Single-mode perturbation analysis is used (prior to thermo-mechanical simulations to come) to estimate RFQ sensitivity to deformations that might occur under operation [4]: an arbitrary  $10^{-4}$  capacitance relative perturbation is applied successively to all 15 modes in each Q, S and T subset. RFQ frequency shift is about 17 kHz. Voltage error reaches 1.17% for Q<sub>1</sub>-like perturbation, and 0.63% for S<sub>3</sub>/T<sub>3</sub>-like perturbation. Voltage error decreases rapidly with mode index, down to  $5.15 \ 10^{-4}$  and  $6.90 \ 10^{-4}$  for Q<sub>5</sub> and S<sub>5</sub>/T<sub>5</sub>-like perturbations respectively. This suggests to alternate cooling water circulation from 1 m section to the next, in such a way perturbations would preferably occur on 5-th order modes.

## **CONCLUSION**

The un-segmented 5-meter long ESS RFQ is naturally stable with adequately designed end-circuits. Desired voltage profile is achieved with a continuously varying cross-section, in such a way slug tuners are dedicated to compensation of construction errors only. The coupling loop induces negligible voltage perturbation. Sensitivity parameters useful for cooling scheme design are given.

# REFERENCES

- O. Delferrière, M. Desmons and A.C. France, "A New RF Tuning Method for the End Regions of the IPHI 4-Vane RFQ", EPAC'06, Edinburgh, June 2006, POPCH105.
- [2] A.C. France, O. Delferrière, M. Desmons and O. Piquet, "Design of Slug Tuners for the SPIRAL2 RFQ", PAC'07, Albuquerque, June 2007, TUPN006.
- [3] C. Rossi and al., "Progress in the Fabrication of the RFQ Accelerator for the CERN Linac4", LINAC'10, Tsukuba, September 2010, TUP042.
- [4] A.C. France and al., "Un-segmented vs. Segmented 4-vane RFQ: Theory and Cold Model Experiments", IPAC'10, Kyoto, May 2010, MOPD026.

3802