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wire Transmission Line Model TLM, see Fig. 3) are 
derived from Comsol® 2D simulations, and shown in 
Fig. 4 (parallel inductance), Fig. 5 (parallel capacitance) 
and Fig. 6 (diagonal capacitance). 

STABILITY ANALYSIS 
The sensitivity of RFQ to quadrupole-like and dipole-

like perturbations is described by the norms of 
dimensionless error impulse functions ||hQ0,X||, X = Q, S or 
T (Q0 is the accelerating mode). Each hQ0,X(z,z0) function 
relates relative voltage perturbation VQ0,X(z)/VQ0,Q(z) to 
originating "impulse" perturbation (zz0)CXQ/C(z) 
located in z0. The norms given by ||hQ0,X|| = supz supz0 
|hQ0,X(z,z0)| primarily depend on frequency, RFQ length 
and end-circuits s-parameters defined by dUX(a)/dz = 
sXUX(a), dUX(b)/dz = +sXUX(b)  (z = a, b are RFQ ends 
abscissa). In the present case of un-segmented RFQ, 
||hQ0,Q|| cannot be that much adjusted since sQ = 0 is 
required (||hQ0,Q|| ≈ 97). A smooth optimum 32 ≤ ||hQ0,S/T|| 
≤ 80 is found for 2 ≤ sS/T ≤ 0 V/m/V. End-circuits are 
designed (Fig.  7) to satisfy both sQ and sS/T requirements 
with proper choices of quadrupole rods lengths (28 and 31 
mm) [1] and vane undercuts (23 and 25 mm). Resulting 
||hQ0,S/T|| is 39, close to optimum. Modes closer to Q0 
accelerating mode are Q1 (+1.47 MHz), D2 (5.2 MHz) 
and D3 (+2.6 MHz). 

Figure 7: A view of E field amplitude at RFQ input. 

TUNING 
A set of 4×15 slugs (80 mm dia., 334 mm axes spacing) 

will be available for tuning. Tuner 2D inductance slopes 
required by TLM are derived from Comsol® 3D 
simulations; they exhibit a linear behavior up to +30 mm 
position inside cavity, and are roughly independent of 
tuner location (Fig. 8). Tuner spacing is related to RFQ 
tuning process. Bead-pull measurements are used to sense 
longitudinal magnetic field Hz(x0,y0,z) vs. abscissa z at 
some transverse location {x0,y0} in RFQ quadrants, and a 
conversion factor (z) = V(z)/Hz(x0,y0,z) is applied to 
recover the value of inter-vane voltage V(z). 3D 
simulations show that voltage accuracy is better than 1% 
if field samples are located at least at 82 mm from tuner 
axes. The resulting system of T = 15 tuner and S = 30 
sampling locations is optimum in the sense that spurious 
spectral components of inductance eigen-functions 
(shown in Fig. 9) fall in rejection bandwidth of linear 
filter-bank used for voltage reconstruction (Fig. 10). 

Figure 8: Left: 2D inductance vs. tuner position and tuner 
location (color-coded); right: inductance slope vs. tuner 
location (same color code). 

Figure 9: Inductance eigen-functions; Q, S and T subsets 
shown from left to right. 

Figure 10: Left: spectral components of Q eigen-
functions. Right: transmittance of reconstructing filter-
bank. Spurious components in the red box are rejected. 

RF POWER COUPLING  
RF power is coupled by the loop sketched out in 

Fig. 11; coupled power may be adjusted from 234 to 
469 kW as the loop is rotated from 45° to 0° about its 
axis. Relative inter-vane voltage perturbation induced by 
the loop remains smaller than 1.8 10-3. The loop could be 
in principle located either in place of a tuner or at mid-
point between two adjacent tuners. The first possibility 
implies that the loop would be in itself a tuner, whose 
position inside/outside cavity should be adjusted at each 
tuning iteration, with the undesired effect of varying 
coupling coefficient in the same time. The second 
possibility is then highly preferable. HFSS 3D simulations 
show that V/Hz perturbation induced by a loop located 
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between two tuners in 0 (resp. +35) mm position exceeds 
1% in a 28 (resp. 48) mm interval centered about loop 
axis, hence a wide space is left for field samples on both 
sides of loop (Fig. 12).  

Figure 11: Coupling loop located between two tuners. 

Figure 12: V/Hz perturbation induced by a loop in 0° 
(left) and 45° (right) position, and located between two 
tuners in +35 mm position, is < 1% in red boxes.  

TUNER POSITION RANGE 
Tuner position limits required to compensate for 

mechanical construction errors are derived from inter-
vane capacitance errors. Tolerances on electrodes tips are 
defined by the two numbers t and : 

- centre of curvature of each electrode tip is located in a 
square with side 2t, centered at its theoretical location; 

- electrode tip radius error is bounded by . 
Parameters t and  are varied in the intervals [40,60] 

and [20,40] m respectively. Each pair {t,} defines a 
capacitance relative error volume as the one shown in 
Fig. 13. Tuner position limits are then calculated 
according method described in [2], assuming constant 
inductance slope. A 30% safety margin is then added on 
either side of range, and results are corrected according to 
actual inductance slope. As shown in Table 1, tuner 
position limits approximately remain in a [10,+30] mm 
interval provided that t+ is lower than 80 m.     

 
Figure 13: Capacitance relative error volume, in 
{QQ,SQ,TQ} axes (t = 50 m,  = 30 m). 

Table 1: Tuner position limits (in mm) vs. t, . 

 t=40 m t=50 m t=60 m 

=20 m 
   +26.8 
3.1 

   +29.3 
6.3 

    +31.9 
10.4 

=30 m 
   +29.5 
6.5 

   +32.1 
10.7 

    +34.7 
16.7 

=40 m 
   +32.3 
11.0 

   +34.8 
17.1 

 

VACUUM PORTS 
ESS RFQ vacuum ports are in fact identical to those of 

Linac4 RFQ. Accurate penetration depth is determined 
experimentally prior to braze [3], in order to alleviate 
possible numerical simulation uncertainties. 

STABILITY UNDER OPERATION 
Single-mode perturbation analysis is used (prior to 

thermo-mechanical simulations to come) to estimate RFQ 
sensitivity to deformations that might occur under 
operation [4]: an arbitrary 10-4 capacitance relative  
perturbation is applied successively to all 15 modes in 
each Q, S and T subset. RFQ frequency shift is about 17 
kHz. Voltage error reaches 1.17% for Q1-like perturbation, 
and 0.63% for S3/T3-like perturbation. Voltage error 
decreases rapidly with mode index, down to 5.15 10-4 and 
6.90 10-4 for Q5 and S5/T5-like perturbations respectively. 
This suggests to alternate cooling water circulation from 1 
m section to the next, in such a way perturbations would 
preferably occur on 5-th order modes.  

CONCLUSION 
The un-segmented 5-meter long ESS RFQ is naturally 

stable with adequately designed end-circuits. Desired 
voltage profile is achieved with a continuously varying 
cross-section, in such a way slug tuners are dedicated to 
compensation of construction errors only. The coupling 
loop induces negligible voltage perturbation. Sensitivity 
parameters useful for cooling scheme design are given.  
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