
THE FIRST DEVELOPMENT OF AN EPICS ACCELERATOR
CONTROL SYSTEM FOR THE IDAHO ACCELERATOR CENTER

Anthony Andrews∗, Y. Kim, C. Eckman, A. Hunt, and D. Wells
Department of Physics, Idaho State University, Pocatello, ID 83209, USA

K. Kim, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA

Abstract

The Idaho Accelerator Center (IAC) of Idaho State Uni-
versity, has been operating nine low energy accelerators for
nuclear physics applications and medical isotope produc-
tion [1]. But almost all of those accelerators do not have
modern computer based systems to control the various ac-
celerator components remotely. To obtain stable accelera-
tor operations with a good reproducibility, the EPICS ac-
celerator control system has been adapted. After develop-
ing an EPICS control system for various components, the
same control system will be applied to all other operating
accelerators at the IAC. Since January 2011, an EPICS con-
trol system has been developed for a 16 MeV S-band linac
by collaborating with SLAC controls department. This pa-
per describes the first EPICS accelerator control system to
control magnet power supplies of the S-band linac at the
IAC.

INTRODUCTION

To upgrade the computer based accelerator control sys-
tem at the IAC, various control systems using EPICS have
been developing. As shown in Fig. 1, the ultimate goal of
our project is a combination between the control system for
a magnet power supply and a control system for a GigE
CCD camera using MATLAB Channel Access (MCA).
By combining these two control systems, a new tool will
be available which can measure the beamsize on an OTR
screen and current of a magnet power supply simultane-
ously. This will enable us to make automatic emittance
measurements with EPICS, MCA, and MATLAB [2]. The
control system described here is specifically for a TDK-
Lambda ZUP magnet power supply [3]. To develop its
EPICS control system, the power supply was connected to
a MOXA terminal server with an RS485 interface [4]. Then
the terminal server was connected to the network using an
Ethernet cable for remote control. After that, a means to
communicate with the power supply was developed by us-
ing two EPICS modules (ASYN and StreamDevice) [5].
Finally, a device support application was programmed and
the current of the TDK-Lambda ZUP power supply was
controlled by manipulating process variables (PVs) using a
simple operator interface (OPI) panel. This paper describes
the details of the first EPICS accelerator control system de-
veloped for the IAC.

∗Mail: andranth@isu.edu

Figure 1: Schematic layout of an EPICS, MCA, and MAT-
LAB based automatic emittance measurement system [2].

DEVICE SUPPORT APPLICATION
In order to control the magnet power supply, the first step

is to download and install the correct software to commu-
nicate to the power supply, and then make a device sup-
port application which contains the files required to create
PVs. To facilitate communication with devices like the
TDK-Lambda power supply, the synApps software pack-
age including ASYN and StreamDevice was installed [5].

ASYN
ASYN is one of EPICS modules, which facilitates com-

munication between the device, higher level programs, de-
vice support, and others. In other words, ASYN interfaces
higher level programs and drivers in a client computer to
the very basic code which is supplied with the device [6].

StreamDevice
StreamDevice is another EPICS module and a kind of

specific device support for communication by sending and
receiving strings [7]. StreamDevice is used to make pro-
tocols from commands, which only the device can under-
stand. Records use these protocols to make PVs.

Creating the Application

cation must be created for them to live in. To create the
application, the following commands were used [5]:

 Before creating PVs, first of all, a device support appli-

THPPR017 Proceedings of IPAC2012, New Orleans, Louisiana, USA

ISBN 978-3-95450-115-1

4002C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

06 Instrumentation, Controls, Feedback and Operational Aspects

T04 Accelerator/Storage Ring Control Systems

• makeSupport.pl -t streamSCPI devicename

• makeBaseApp.pl -t ioc devicename1

• makeBaseApp.pl -t ioc -i devicename1

The first command makes a support directory where the
database files and protocol files are located. The second
command creates a configure directory and an application
directory. The third command creates an iocBoot directory,
which contains the st.cmd file [5]. The ”devicename” and
”devicename1” are arbitrary names for the support direc-
tory, application directory, and the name of the directory,
within iocBoot, where the st.cmd file is located. The con-
vention here is to use some kind of name which is similar
to the device, however it’s a good idea to make the names
of each of those directories different so that they won’t be
confused with each other. Protocol files, database files, and
st.cmd files will be explained in more detail in later sec-
tions.

SCPI Commands

The commands of the TDK-Lambda ZUP power supply
follow Standard Commands for Programmable Instruments
(SCPI). One example of the commands which were used is:

• :CUR?;

This is a query command which asks the value of the cur-
rent of the power supply [3]. Now these simple commands
need to be converted into PVs, so the operator can easily
read and write current values to the device.

Protocol Files

Stream Device uses protocol files to translate simple
commands that the equipment understands (SCPI com-
mands) into a format that EPICS records understand [7].
For example, the previous :CUR?; command would look
like this:

• getI{ out “:CUR?”; in “AA%6f”;}

In this case, getI becomes a protocol, which sends the query
command :CUR?; “out” to the device and gets a response
“in” from the device which has an AA followed by a point-
ing number with six floating digits. So, an example of a
response could look like AA05.000, which corresponds to
5 A. Another example of a protocol is the following:

• setI{ out “:CUR%06.3f”;}

This protocol is just a write operation sent by the operator.
It is used to set the current of the power supply to be a six
digit number with three decimal places. Something that
is common to see at the top of a protocol file in the first
two lines are terminators. A terminator is a symbol entered
by the operator or an automatic response from the device
which signals the end of an I/O operation [7].

OutTerminator The OutTerminator is a symbol that
the operator puts on the end of a string to let the device
know that the write operation is complete [7]. This is
something that differs from device to device, but for our
TDK-Lambda ZUP power supply, that character is a semi-
colon. However, protocol files produce errors when too
many semi-colons are placed next to each other. So the
best way to handle that is by representing the terminator
with a hexadecimal equivalent like this:

• OutTerminator=0x3B;

This represents the semi-colon character in hexadecimal.

InTerminator The InTerminator is the automatic re-
sponse sent back from the device to the operator to let the
operator know that the read operation is complete [7]. In
our case, this was a line feed. The syntax for a line feed
looks like this:

• InTerminator=LF;

A line feed occurs when the response from the device is
displayed one line below the command, which is sent to
the device.

Database File
The database file or files are where the records are

located. The way that PVs are made is by putting the
protocol name (ie getI) into the input or output fields in the
record [5, 7]. Here’s one of the records that was used to
read the current:

record(ai, “(P)(R)Curr R”){
field(DESC, ”current read”)
field(DTYP, ”stream”)
field(INP, ”@NL2010.proto getI $(PORT) $(A)”)
field(PREC, ”6”)
field(EGU, ”Amps”)
field(HOPR, ”10”)
field(LOPR, ”0”) }

One field of particular interest is the INP field. This field
sends the command defined as the protocol “getI” located
in the protocol file “NL2010.proto” to the port and address
of the device. The $(PORT), $(A), $(P), and $(R) are all
defined in the st.cmd file.

st.cmd File
This is an executable file that establishes a connection

to the device by using it’s IP address, portName, and
address. This file also loads all of the records that are in
the database files. The way that one specifies what the IP
address of the device depends on the hardware interface
of the device and how one communicates with the device.
For the TDK-Lambda ZUP power supply, which was
interfaced to a MOXA terminal server with an RS485
cable, telnet was used before the EPICS channel access
(CA) connection. To specify this setup, the following line

Proceedings of IPAC2012, New Orleans, Louisiana, USA THPPR017

06 Instrumentation, Controls, Feedback and Operational Aspects

T04 Accelerator/Storage Ring Control Systems

ISBN 978-3-95450-115-1

4003 C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

was entered in the st.cmd file.

drvAsynIPPortConfigure(”P3”,”134.50.A.B:4003”,0,0,0)

Here P3 is a portName, which is an arbitrary identifier
used to define $(PORT) from records as an IP address
(134.50.A.B) and a port (4003) of the MOXA terminal
server [5]. In our case, P3 was used because our power
supply was connected to the third port of the MOXA
terminal server with an RS485 cable. The rest (0,0,0)
specifies priority, noAutoConnect, and noProcessEos
[5, 6]. To specify a database in the st.cmd file, a line
similar to the following thing was used.

dbLoadRecords(”db/.db”,”P=$(P),R=$(R),PORT=,A=”)

Here the .db is the database file that contains all of the
needed records. The macros P and R are defined in the
st.cmd file as well. They specify what the full name of
a record will be. For example P could be something like
“NL2010” and R could be “Test”. The PORT is the same
as the portName. The address (A=) for our set-up was zero
because the test bench which was used for this project had
only one power supply [5].

MEDM OPI
Motif Editor and Display Manager (MEDM) is an

EPICS extension which provides a way to create simple
OPI’s [8]. One of these OPI’s to control the current of
the power supply is shown in Fig. 2. Here the current
of a quadrupole magnet power supply was automatically
scanned by a MATLAB program to increase the current
from 0 A to 2 A with a speed of 0.2 A in 0.5 seconds,
while ten images were automatically taken by a Prosilica
GigE GC1290 CCD camera in each scan step. This is an
example of the EPICS, MCA, and MATLAB based auto-
matic emittance measurement system [2]. If the operator
wants to control the current manually, they could simply
change the current by moving the slide bar on the bottom
left of Fig. 2. The left meter above the current controller
shows the exact set-value of the power supply current, and
the right meter above the current controller shows the read-
back of the power supply current. The top-left strip chart
shows the change in set and read-back values of the power
supply current, while the top-right strip chart shows the
change in the read-back value of the power supply volt-
age with time. Since the power supply was operating in
the constant current mode, only the read-back value of the
voltage was displayed on the strip chart on the right hand
side. However, a controller for the voltage was included
in case the operator wants to operate the power supply in
the constant voltage mode instead of the constant current
mode.

CONCLUSION
Our goal for this project was to make an EPICS control

system for a TDK-Lambda ZUP power supply. This was

Figure 2: An MEDM OPI pannel to control and read the
current of the TDK-Lambda power supply.

accomplished by using ASYN and StreamDevice to com-
municate with the power supply and convert SCPI com-
mands into PVs. Then we created an MEDM OPI to con-
trol and monitor those PVs. We successfully developed
the first EPICS control system at the IAC to control a TDK-
Lamda ZUP power supply for a low energy accelerator. In
the near future, the control system of the IAC accelerators
can be upgraded with our newly developed EPICS accel-
erator control system. In addition, a simple demonstra-
tion of the EPICS, MCA, and MATLAB based automatic
emittance measurement system was successfully done. I
would like to thank Dr. Eric Norum who provided invalu-
able advice, help with troubleshooting various errors, and
patiently explained many EPICS concepts through email
correspondence.

REFERENCES
[1] http://www.iac.isu.edu

[2] C. Eckman et al., in Proc. IPAC2012, New Orleans LA, USA.

[3] http://www.tdk-lambda.com/products/sps/ps_adj/

zup/indexe.html#

[4] http://www.moxa.com/product/nport_6650.htm

[5] E.Norum, HowToDoSerial(StreamDevice).
Argonne National Laboratory,
http://www.aps.anl.gov/epics/modules/soft/asyn/

HowToDoSerial_StreamDevice.html

[6] E.Norum, et al., asynDriver: Asynchronous Driver Support”.
Argonne National Laboratory, http://www.aps.anl.gov/
epics/modules/soft/asyn/R4-18/asynDriver.html

[7] D. Zimoch, EPICS StreamDevice .” StreamDevice. Paul
Shriner Institut.
http://epics.web.psi.ch/software/streamdevice/

doc/index.html

[8] K.Evans, Jr.,“MEDM Reference Manual”. Argonne National
Laboratory,
http://www.aps.anl.gov/epics/EpicsDocumentation/

ExtensionsManuals/MEDM/MEDM.html

“

“

“

THPPR017 Proceedings of IPAC2012, New Orleans, Louisiana, USA

ISBN 978-3-95450-115-1

4004C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

06 Instrumentation, Controls, Feedback and Operational Aspects

T04 Accelerator/Storage Ring Control Systems

