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Abstract

Electric dipole moment (EDM) measurements may help
to answer the question “Why is there more matter than anti-
matter in the present universe?” For a charged baryon like
the proton such a measurement is thinkable only in a ring
in which a bunch of protons is stored for more than a few
minutes, with polarization “frozen” (relative to the beam
velocity) and with polarization not attenuated by decoher-
ence. Beam and spin dynamics in an all-electric lattice with
these characteristics is described. Rings for other charged
baryons, such as deuterons or helium-3 nuclei, are also pos-
sible but, requiring both electric and magnetic fields, they
are more complicated.1

THEORETICAL MOTIVATION

The fundamental significance of electric dipole moments
of fundamental particles has been understood for half a
century, leading to experiments by Ramsay and others and
theoretical speculations by Sakarov and others.

A 1981 paper by Ellis et al.[1] stated: “We argue that in
a wide class of grand unified theories diagrams similar to
those generating baryon number in the early universe also
contribute to renormalization of the CP-violating θ parame-
ter of QCD and hence to the neutron electric dipole moment
dn. We then deduce an order-of-magnitude lower bound on
the neutron electric dipole moment: dn ≈ 3×10−28 e cm.”

In a 1992 conference summary, Weinberg[2] stated:
“Also endemic in supersymmetry theories are CP violations
that go beyond the CKM matrix, and for this reason it may
be that the next exciting thing to come along will be the
discovery of a neutron or atomic or electron electric dipole
moments. These electric dipole measurements seem to me
to offer one of the most exciting possibilities for progress
in particle physics. ”

The 2007 Nuclear Science Advisory Committee (NSAC)
Long Range Plan emphasized the importance of electric
dipole moment (EDM) measurements for answering the
question “Why is there more matter than antimatter in the
present universe?”. Until that time it was the neutron that
seemed to be the most promising candidate for this mea-
surement. It has recently been realized[3] that, stored for
many minutes in a storage ring, the EDM’s of proton,
deuteron, and helium-3 nuclei may be measurable to bet-
ter precision than can the neutron’s.

Quite recently, introducing the 2011 Conference on
Fundamental Physics at the Intensity Frontier, Arkani-
Hamed[4] identified EDM’s (along with quark and lepton
flavor physics) as the areas of greatest promise.

1Partial support: the U.S. DOE, OSP Number: 62355/A001.

This paper discusses experimental practicalities of mea-
suring the proton EDM. Methods for deuterons and 3He
nuclei will be similar.

SYMMETRY VIOLATIONS FOR A
PARTICLE WITH BOTH MDM AND EDM

A magnetic dipole (MD) can be visualized as a loop of
current lying in a plane; its axis is a pseudo-vector nor-
mal to the plane. An electric dipole (ED) can be visual-
ized as separated charges (with vector pointing from posi-
tive to negative charge). Both types of vector can define the
same plane, but they contain different geometric informa-
tion. The magnetic pseudo-vector determines an in-plane
rotational sense, but does not distinguish between the two
sides of the plane. The electric vector does the opposite.

The ED and MD of the same particle cannot be said to
be “parallel” without violating parity P—viewed in a mir-
ror ED and MD would be anti-parallel. For ED and MD to
be “parallel” would also violate time reversal T—run back-
wards, MD would reverse, ED would not.

Without any doubt, a proton has an MDM. For the pro-
ton to also have an EDM would imply the violation of both
P and T symmetries. With CPT symmetry assumed, this
would also implies the violation of CP symmetry. Viola-
tion of CP is a necessary condition for the cosmic evolu-
tion from balanced to unbalanced fractions of matter and
anti-matter.

EDM-INDUCED SPIN PRECESSION
Numerically, in SI units, we can define 10−29 e-cm to

be a “nominal” EDM, dnom = 10−29 · (1.602 × 10−19) ·
(0.01) = (1.602 × 10−50) [SI]. At our most optimistic, an
EDM of this magnitude can be persuasively distinguished
from zero in one year of running.

The ratio to nuclear magneton is dnom/μB = (1.602 ×
10−50)/(5.05 × 10−27) = 3.127 × 10−24, with both nu-
merator and denominator in SI units. This ratio is not di-
mensionless and cannot therefore be used to estimate the
relative strength of electric and magnetic precession. The
missing factor is E/B. For our configurations, in SI units,
this ratio is typically 107/0.1 ≈ 108. After multiplying by
this factor, the relative-effectiveness ratio is dimensionless
and has a numerical value of about 3 × 10−16. This is the
approximate factor by which the EDM-induced precession
is smaller than the (orthogonal) MDM-induced precession.

The rate of magnetic precession itself is large. For a
pure Dirac particle in a magnetic field the precession is
2π per turn. At one microsecond per turn, this is of order
107 radians/s. Applying the E/B factor mentioned above,
we therefore plan to measure a “nominal” EDM-induced
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precession of order 10−9 r/s. After 105 s this would be
0.1 mr.

ALL-ELECTRIC STORAGE RING DESIGN
An all-electric storage ring is shown schematically in

Fig. 1, and one cell of the lattice is shown in Fig. 2. Hori-
zontal and vertical β-functions are shown in Fig. 3.
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Figure 1: A very weak focusing all-electric lattice for mea-
suring the electric dipole moment of the proton. Electric
quadrupoles at the B locations tune the central vertical tune
to, for example, Qy,0 = 0.15. Superimposed on this, one
or more of the B quadrupoles “wobble” Qy away from
this value. By synchronous detection of the vertical sep-
aration of counter-circulating beams any radial magnetic
field can be detected and nulled. With all electric bending,
counter-circulating beams superimpose exactly, and all op-
tical properties are identical for the two beams.
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Figure 2: One cell of all-electric proton EDM lattice, with
electrodes shaped for design field index m.

ESSENTIAL EXPERIMENTAL FEATURES
Design of this storage ring is dictated almost uniquely

by the requirements of the experiment. Ideally the lat-
tice would be purely weak focusing, with vertical tune

Figure 3: Plots of β functions of proton EDM lattice. βy is
necessarily very large, since Qy has to be small.

Qy < 0.1, with no straight sections, and with field index
(defined below) m ≈ 0. Accelerator practicalities force
these requirements to be relaxed.

About 1010 protons need to be stored in multiple, low
emittance, low energy spread, highly polarized bunches,
for at least a quarter of an hour and preferably a day. The
accumulated EDM effect is proportional to the run dura-
tion, and the statistical precision with which the polariza-
tion can be measured is limited by the number of protons
available for the measurement. This requires high effi-
ciency, polarization-preserving injection and storage.

The EDM signal is proportional to radial electric field
Er, which must therefore be maximized. We expect to
achieve Er=10 MV/m, leading to r0=40 m. As shown in
Fig. 4, there is a “magic” velocity β=0.6 for which the
spin can be “frozen”, parallel or anti-parallel to the pro-
ton velocity. Any EDM-induced spin precession will then
accumulate monotonically. Stabilizing this configuration
requires closed loop feedback from polarimeter to RF fre-
quency. This is possible because the analyzing power of
the proton carbon scattering used by the polarimeter ex-
ceeds 1/2 at the magic velocity. To reduce polarimeter bias
the polarizations of circulating bunches alternate, forward
and back.

Figure 4: β-dependence of (magnetic) spin tune Q for pro-
tons in all-electric lattice. The spin is “globally frozen”
for β=0.6. The spin is locally, but not globally, frozen for
β=0.76, where Q is an integer other than zero.

Because, radial magnetic field acting on the magnetic
moment mimics the EDM signal, several orders of magni-
tude suppression of magnetic field using both passive mag-
netic shielding and active Br correction coil will be pro-
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vided. Furthermore, current-matched counter-circulating
beams will be stored, and the difference of their vertical po-
larizations measured. EDM-induced precessions will sum
in this difference, while MDM-induced precessions cancel.

Counter-circulating beams provide another protection
against MDM precession caused by radial magnetic field
Br. Any average radial magnetic field will produce vertical
separation between the counter-circulating beams. Feeding
back from vertical beam position (BPM) monitors to Br

compensation coils to null the vertical beam separation will
force the average value of Br to zero.

Squid magnetometers will be used for this nulling. Their
precision is likely to dominate the systematic error of the
measurement. In controlled lab environments squid mag-
netometers have been shown to provide the needed accu-
racy, but here they have to function in a (noisy) accelerator
environment.

To improve the precision of vertical beam separation de-
termination the vertical beam focusing will be made as
weak as possible; for example the vertical tune will be as
small as Qy = 0.1.

Furthermore, by changing the strengths of one or more
of the quadrupoles labelled B in Fig. 1, Qy will oscillate
about its nominal value, parametrically pumping the beam
separation at a frequency in the kilohertz range, for which
noise is minimal. Synchronous, lock-in detection of the
vertical beam separation will permit greater BPM accuracy
than is possible at existing storage rings.

Run duration may be determined by spin coherence time
(SCT). One way of maximizing SCT is to reduce beam
emittances. This can be done using electon cooling be-
fore data collection begins but, to avoid spurious spin pre-
cession, not during runs. Stochastic beam cooling may be
possible throughout the runs.

“EXACT” UAL/ETEAPOT TRACKING
Most accelerator modeling programs assume that mag-

netic bending is dominant. For simulating the perfor-
mance of an electric ring we need to account for the
potential energy variation accompanying transverse posi-
tion oscillations, an effect absent in magnetic elements.
Within the Unified Accelerator Library (UAL) modeling
framework[5] we have developed a code, ETEAPOT, pat-
terned after TEAPOT[6], capable of simulating an all-
electric ring.

An electric field with “field index” m power law depen-
dence on radius r for y=0 is

E(r, 0) = −E0
r1+m
0

r1+m
r̂, (1)

and the electric potential V (r), adjusted to vanish at r =
r0, is

V (r) = −E0r0

m

(
rm
0

rm
− 1

)
. (2)

The “cleanest” case has m=1, which is the well-known Ke-
pler or hydrogen atom case, except we must use relativistic

mechanics. The Lorentz force equation is

dp
dt

= −k
r̂
r2

, (3)

where k is the customary MKS notation for 1/(4πε0) ex-
cept for implicitly containing also a charge factor.

Remarkably, the exact 2D relativistic solution can be
expressed in closed form for arbitrary amplitude[7][8][9].
The Muñoz/Pavic formulation[7], though consistent with
other formalisms describing relativistic inverse square law
orbits, is especially appropriate for our relativistic acceler-
ator application. Their “generalized”-Hamilton vector

h = hr r̂ + hθ θ̂ (4)

is especially convenient for describing 2D, relativistic ac-
celerator orbits. Our 3D application can be formulated in
such a way as to use only such 2D orbits. Though h is
not conserved in general, it is conserved if and only if the
orbit is circular, as it is on the central orbit of our proton
EDM lattice. Neglecting the effects of the very weak, ver-
tically focusing quads, off-momentum closed design orbits
are also circles.

For long term tracking, we use this exact (and hence
symplectic) m=1 evolution. But the actual storage ring
field index value will have m �= 1. To compensate for
this incorrect focusing effect we “kick correct” to the ac-
tual m value, a process which also preserves symplecticity.
In contrast to “approximate tracking in an exact lattice” this
is “exact tracking in an approximate lattice”; this becomes
fully accurate only in the limit of fine slicing.

The total energy,

E = eV (r) + γ(r)mpc
2, (5)

(rather than just the second term), is conserved (except for
tiny changes passing through RF cavities.) So we recalcu-
late γ(r) whenever it is needed (e.g. to use Lorentz force
to obtain the acceleration.) The angular momentum is

L = r × p. (6)

Both E and L are constants of the motion, but β and γ are
not. This causes the conventional Courant-Snyder formal-
ism to break down within electric elements, especially if
the ring Twiss functions are required to be continuous. But
the standard formalism can be consistently maintained out-
side electric elements, and then interpolated through them.

In terms of laboratory angle θ, the equations of motion
reduce to

dhr

dθ
= hθ,

dhθ

dθ
= −κ2 hr,

(7)

where

κ2 = 1 −
(

k

Lc

)2

. (8)
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These are the equations that justify having introduced the
generalized Hamilton vector. Their general solution, valid
at all amplitudes, can be written as

hθ = C cosκ(θ − θ0)

hr =
C
κ

sin κ(θ − θ0). (9)

where θ is a running angle in the interior of the bend and
θ0 is an angle to be determined, along with C, by matching
to the known initial conditions.

For transverse orbit description, we replace Courant-
Snyder 4D phase space description by the wobbling plane
description illustrated in Fig. 5. The angular momentum
pair (Lx, Lz), normal to the bend plane, rather than the pair
(y, y′) are evolved; re-scaled appropriately their numerical
values can be adjusted to be the same to linear order.

z

y

0L

r̂

Lz Lx

x

bend plane

L

p

y

y’

center of rotation

Figure 5: Wobbling-plane orbit coordinate definitions.

Our ETEAPOT evolution formalism has been checked
against a conventional linearized transfer matrix formalism
described, for example, by Wollnik[10]. Designed to be
valid for all amplitudes, ETEAPOT tracking should cer-
tainly be accurate for the very small amplitudes for which
the linearized formalism is valid. By tracking a bunch of
standard particles having tiny, but non-zero, amplitudes,
it is possible to extract approximate linear transfer ma-
trix elements (by numerical differentiation). Tunes and β-
functions can be obtained from these transfer matrices. Re-
sults of one such comparison are given in Table 1. The
agreement is excellent. To the extent there is disagreement
it is largely due to our kick correction for field index devi-
ation from m=1. Theoretically this correction should be-
come perfect in the limit of zero length element slicing.
Our numerical results are consistent with this.

SPIN COHERENCE TIME ESTIMATE
In estimating spin decoherence we need to account for

the potential energy variation accompanying transverse po-
sition oscillations. Though the electric field is centrally
directed within individual deflection elements, the centers
of curvature of adjacent deflecting elements do not coin-
cide. (Angular momentum components can be consistently
propagated across drifts however.) Here, for simplicity, we

Table 1: Comparisons of lattice functions calculated by
linearized transfer matrix formalism and the arbitrary-
amplitude UAL/ETEAPOT formalism, for the field index
m = 0 cylindrical electrode case. (Vertical stability is pro-
vided by the very weak quadrupoles shown.)

file name unit linearized “exact”
cells/arc 20

bend radius m 40.0
half drift length m 1.0

half bend per cell r 0.078539816
half bend length m 3.141592
circumference m 331.327

quadrupole inverse focal length 1/m -0.00005960
field index 1.0e-10

horizontal beta m 36.1018 36.0962
vertical beta m 263.6201 263.0767

horizontal tune 1.4578 1.4579
vertical tune 0.2000 0.2005

restrict the discussion to a uniform, weak focusing lattice
with no drift regions. We have to consider both “coasting
beams” and the “bunched beams” that result with RF cavi-
ties in the ring.

Figure 6 shows the spin vector s in relation to the design
orbit. The evolution of the spin precession angle α, relative

s

x ŷB=B

x̂

x̂E= −E

ẑββ β=

s
α θ

Figure 6: Spin vector s has precessed through angle α away
from its nominal direction along the proton’s velocity.

to the proton direction, is given by[11]

dα

dt
=

eE(x)
mpc

(
gβ(x)

2
− 1

β(x)

)
, (10)

where g = 5.5857 is the proton g-factor. The angular ve-
locity in bend regions depends on the angular momentum
L and radial coordinate r;

dθ

dt
=

L

γmpr2
. (11)

L is a constant of the motion (because the force is radial)
but γ and r = r0 + x depend on x. Eqs. (10) and (11)
combine to give

dα

dθ
=

eE(x)(r0 + x)2

Lcβ(x)

((g

2
− 1

)
γ(x) − g/2

γ(x)

)
, (12)
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To find the evolution of α over long times we need to av-
erage this equation. Complicating this averaging is the fact
that the final factor has been intentionally arranged to can-
cel for the central, design particle. The initial factor, though
not constant, varies only over a small range, which tends to
suppress correlations between the two factors. A promising
approximation scheme is, therefore, to average the factors
individually;

〈dα

dθ

〉
=

〈
eE(x)(r0 + x)2

Lcβ(x)

〉((g

2
− 1

)
〈γ〉 − g

2

〈 1
γ

〉)
.

(13)
The second factor depends only on γ (which varies along
the orbit). For bunched beam operation this factorization
is convenient, since γ deviates sinusoidally in storage ring
operation at constant energy and is stabilized to average to
the magic value γ0. Only odd harmonics appear at large
amplitudes, and they also cancel on the average. But the
1/γ factor in Eq. (13) does not average to 1/γ0.

The angle and time independent variables θ and t are
very nearly, but not exactly proportional to each other. For
coasting beams averages over θ and t are therefore not
equivalent. But for bunched beams θ and t are strictly
proportional (on the average) over long times, and the two
forms of averaging should be equivalent.

The virial theorem can be used to obtain average behav-
ior of multiparticle systems subject to central forces. We
need to use a relativistic version of the theorem. “Virial” G
is defined in terms of radius vector r and momentum p by

G = r · p. (14)

Our electric field is given by Eq. (1) and Newton’s law is
given by Eq. (3). In a bending element the time rate of
change of G is given by

dG

dt

∣∣∣
bend

= mpc
2γ − mpc

2 1
γ
− eE0r0

rm
0

rm
. (15)

Averaging over time, presuming bounded motion, and
therefore requiring 〈dG/dt〉 to vanish, one obtains

〈 1
γ

〉
= 〈γ〉 − E0r0

mpc2/e

〈
rm
0

rm

〉
. (16)

Applying this result, and r = r0 + x, to average Eq. (13)
yields

−
〈dα

dθ

〉
≈ (17)

E0r0γ0

(p0c/e)β0

(〈
γ

γ0
− 1

〉
+ m

〈
x

r0

〉
− m2 − m

2

〈
x2

r2
0

〉)
.

Higher order terms in the expansion parameter x/r0 ≈
2 × 10−4 have been dropped. Polarimeter/RF feedback
forces the first term (in parenthesis) to cancel exactly. The
factor 〈x〉 also tends to cancel over many betatron cycles.
But changes of electric potential cause this cancellation to
be imperfect. This term has a further factor of m. For the

“cylindrical” case m = 0, suggesting that the optimal elec-
trode shape will be at least approximately cylindrical. We
also know, however, that m = 0 is singular, as regards the
functioning of the lattice as a storage ring. (For m = 0 all
circular orbits centered on the bend center have the same
momentum, independent of radius.) We nevertheless an-
ticipate designing the field index to be close to m = 0,
consistent with the achievable energy acceptance.

If the parenthesized factor in Eq. (17) has a value of order
1, the spin coherence time would be measured in millisec-
onds, far too short for the EDM measurement to be feasi-
ble. But, taking m = 1 as a possible field index value, it
can be seen that the parenthesized factor reduces to 〈x/r0〉.
Already of order 10−4, this factor further averages to zero
for linear betatron and synchrotron oscillations. It is hoped
that careful lattice design, especially linearizing chromatic
dependencies, along with small beam emittances, will pro-
duce adequately great SCT.

A major defect of this treatment has been that spin de-
coherence occurring on entrance to and exit from bend el-
ements has been neglected. The same chromatic lineariza-
tion is expected to reduce this decoherence mechanism to
an acceptable level.
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[7] G. Muñoz and I. Pavic, A Hamilton-like vector for the
special-relativistic Coulomb problem, Eur. J. Phys. 27,
1007-1018, 2006

[8] C. Møller, The Theory of Relativity, Clarendon Press, Ox-
ford, 1952

[9] T. Boyer, Am. J. Phys. 72 (8) 992, 2004

[10] H. Wollnik, Optics of Charged Particles, Academic Press,
p. 124, 1987

[11] J. Jackson, Classical Electrodynamics, 3rd edition, John Wi-
ley, 1998

Proceedings of IPAC2012, New Orleans, Louisiana, USA THXB03

05 Beam Dynamics and Electromagnetic Fields

D02 Non-linear Dynamics - Resonances, Tracking, Higher Order

ISBN 978-3-95450-115-1

3207 C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)


