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Abstract
Several families of nonlinear accelerator lattices with

integrable transverse motion were suggested recently [1].

One of the requirements for the existence of two analytic

invariants is a special longitudinal coordinate dependence

of fields. This paper presents the particle motion anal-

ysis when a problem becomes integrable in the normal-

ized polar coordinates. This case is distinguished from

the others: it yields an exact analytical solution and has

a uniform longitudinal coordinate dependence of the fields

(since the corresponding nonlinear potential is invariant un-

der the transformation from the Cartesian to the normalized

coordinates). A number of interesting features are revealed:

while the frequency of radial oscillations is independent of

the amplitude, the spread of angular frequencies in a beam

is absolute. A corresponding spread of frequencies of os-

cillations in the Cartesian coordinates is evaluated via the

simulation of transverse Schottky noise.

INTRODUCTION
Modern design of cyclic particle accelerators is based on

the transverse linear focusing optics. Despite the simplic-

ity of this concept and the fact that the transverse motion

is integrable, such a system has a serious disadvantage - it

is unstable to the external perturbations. These perturba-

tions are inevitable and vary from the “simple” misalign-

ment of the magnetic optical elements and the fringe fields

to the beam-beam interaction effects. Moreover, the per-

turbations are often introduced deliberately into the system

as in an insertion of sextupoles for the chromaticity correc-

tion. As a result, the complicated net of resonances appears

and does not let to operate a beam with a large spread in a

space of frequencies. However, the large spread is desirable

for the Landau damping, because it reduces the number of

resonant particles.

Three families of 2D integrable nonlinear accelerator lat-

tices were suggested recently [1]. They have a potential to

keep the beam with a large spread of frequencies by the de-

sign due to the nonlinearity, and to minimize the regions of

a chaotic motion due to the integrability at the same time.

Here we consider a lattice with the motion integrable in the

normalized polar coordinates. A qualitative description of

the particles motion, analytical expressions for the angular

and radial frequencies of oscillations along with the Schot-

tky noise simulation are presented.

∗ zolkin@uchicago.edu
† imorozov@fnal.gov
‡ nsergei@fnal.gov

2D INTEGRABLE LATTICES
Consider a Hamiltonian of the 2D linear accelerator lat-

tice with an additional non-linear potential:

H(px, py, x, y; s) =
∑
q=x,y

(
p2q
2

+ gq(s)
q2

2

)
+ V (x, y, s).

The choice of a betatron phase advance, ψ(s), as a new in-

dependent variable, followed by a canonical transformation

to the new normalized phase-space coordinates, moves the

time dependence into the nonlinear term:

H(ηq,Pq;ψ) =
∑
q=x,y

(
P2
q + η2q
2

)

+ β(s(ψ))V (x(ηx, ψ), y(ηy, ψ), ψ)︸ ︷︷ ︸
def≡U(ηx,ηy)

.

This choice of time is possible in the case of equal linear

focusing gx,y(s) = g(s), and the transformation (q, p) →
(ηq,Pq) is given via a generating function

F2(x, y,Px,Py, ψ) =
∑
q=x,y

(
qPq√
β

+
q2β′

4β2

)
,

where ′ def≡ d
dψ represents a derivative with respect to new

“time”, β(ψ) is a beta-function and subscript q is omitted

as long as it does not cause ambiguity. One can see that at

least one integral of motion, the Hamiltonian by itself, can

be ensured by a special “time”-dependence of the nonlinear

potential (which compensate the β-function dependence on

ψ).

A presence of a second integral of motion can be guar-

anteed by the choice of new generalized coordinates where

variables can be separated. Additional constraint on a po-

tential U(ηx, ηy) to satisfy the Laplace equation essentially

reduces the number of possible choices. In the normalized

polar coordinates, r =
√
η2x + η2y and θ = arctan(ηy/ηx),

only the following two satisfy it:

U(r, θ) = d ln r +
A sin(2θ + θ0)

r2
,

with d, A and θ0 are being arbitrary constants.

We will consider a special case with A �= 0, d = 0 (see

Fig. 1). Initially “time”-independent potential in this form

conserves this property under the transformation to the new

normalized coordinates. This interesting property gives an

opportunity to create exactly integrable nonlinear lens of

this type.
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Figure 1: Schematic plot of the non-linear potential in

normalized coordinates (d = 0, θ0 = −π/2), showing

lines of constant potential U(ηx, ηy). Note that U has

a singularity at the origin: lim
ηx→±0

U(ηx, 0) = −∞ and

lim
ηy→±0

U(0, ηy) = ∞.

CLASSIFICATION OF THE MOTIONS
In the normalized polar coordinates the Hamiltonian of

motion becomes:

H(r, θ, pr, pθ;ψ) =
p2r
2

+
1

r2
p2θ
2

+
r2

2
+

A sin(2θ + θ0)

r2
.

The variables separation gives the Hamilton’s principal

function and determines integrals of motion, E and W :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S = −Eτ +

∫
pθdθ +

∫
prdr

pθ =
√
2
√

W −A sin(2θ + θ0)︸ ︷︷ ︸
U eff

θ

pr =
√
2

√√√√E −
(
r2

2
+

W

r2

)
︸ ︷︷ ︸

U eff
r

.

Effective potential energies along with phase curves are

given by graphs in Fig. 2 for the angular and the radial mo-

tions respectively.

The particle motion may be classified according to the

value of W (see Fig. 3):

• Falling to the center (−A ≤ W < 0). The angu-

lar motion is bounded between ±θ+
1, while the radial

motion is only bounded from above, r < r+, and a

particle falls to the origin;

• Oscillation (0 < W < A). The motion is bounded for

both degrees of freedom and particle executes oscilla-

tions (r− < r < r+, |θ| < θ+). The trajectory in the

normalized coordinates resembles the Lissajous curve

performed in the polar coordinates;

• Rotation (W > A). The motion is unbounded in θ
and bounded in r− < r < r+. As a result a particle

rounds the singularity.

1

r± =
(
E ±

√
E2 − 2W

)1/2
,

θ+ = arccos(−W/A)

−2 A

2 A

0 0 0

−A<W<0W>0

r rr

r r
effUr

A

−A

0

−π π/20 π/20−π −π/2

0

−π/2 θ θ

Ueff
(a) (b)

(c) (d.1) (d.2)

0<W<AW=0 W=A−A<W<0 W>A

p p

θ
p

θ

Figure 2: (a) Angular effective potential with level sets of

angular invariant, W ; (b) Phase curves of the angular mo-

tion; (c) Radial effective potential for different values of

W ; (d.1,2) Phase curves of the radial motion for the case

of W > 0 and −A < W < 0 respectively.
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Figure 3: Example of particle trajectories for different val-

ues of W : (a) oscillations, (b) rotation and (c) falling to the

center. The trajectories in Cartesian coordinates are given

by the “time”-dependent scaling x, y = ηx,y
√
β(ψ).

As one can see, only the particles which perform an os-

cillations are suitable for the usage since they do not round

the singularity or do not fall to the center. The vacuum pipe

can be realized as it shown in a Fig. 3 (a) by the black thick

line; such a shape allows to place a nonlinear lens at the

origin.

The Hamiltonian can be re-expressed in terms of canoni-

cal action-angle variables and for particles with oscillations

is given by

H(Ψr,Ψθ, Jr, Jθ;ψ) = 2Jr +
√
2W (Jθ), (1)

where W and Jθ are related as

Jθ =
4
√
A

π

[E(κ)− (1− κ2)K(κ)
]
,

K(κ) and E(κ) are the complete elliptic integrals of the first

and second kinds respectively, and κ =
√
(A+W )/2A.
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FREQUENCY SPREAD
Normalized Polar Coordinates

The frequencies of oscillations in the normalized po-

lar coordinates can be calculated using Eq. (1) as ωr,θ =
∂H/∂Jr,θ, which gives:

ωr = 2,

ωθ =
∂
√
2W

∂W

∂W

∂Jθ
=

1√
2W

π
√
A

K(κ)
.

Thus the radial oscillations are linear with respect to ψ
while the angular one isn’t.

ωθ

Jθ
(W=0) (W=A)

Figure 4: Angular frequency dependence of the amplitude

Jθ (black curve) compared to one of the simple pendulum

(gray curve).

The ωθ dependence of Jθ is equivalent to one of the sim-

ple pendulum2 divided over
√
2W (see Fig. 4). As can be

seen,

• the angular frequency is not determined for −A ≤
W < 0 since particles fall to the center;

• ωθ ∈ (0;∞) for 0 < W < A, which corresponds to

the absolute frequency spread;

• for the particles with large amplitudes, Jθ, the fre-

quency stabilization is observed lim
W→∞

ωθ = 1.

Cartesian Coordinates
In order to study the spread of frequencies in the Carte-

sian coordinates the Schottky noise simulation has been

performed (see Fig. 5). It is revealed that all possible frac-

tional parts of frequencies are presented in a Fourier spec-

tra.

So despite the fact that considered potential provides

nonlinear motion only for the angular degree of freedom,

2The Hamiltonian of such a pendulum is

Hosc =
p2osc
2

+A sin(2θ + θ0)

and the correspondence is given up to a scale factor of 2 with respect to θ.
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Figure 5: FFT of the turn-by-turn Schottky noise simula-

tion in Cartesian coordinates x, y.

both frequency spreads are absolute in the Cartesian coor-

dinates. On the other hand, additional studies of the stabil-

ity of this system with respect to the external perturbations

and inclusion of the longitudinal motion into consideration

should be done to answer the question about feasibility of

such an accelerator.
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