
Abstract

We study an analytical method to derive the strengths
of the dipolar and skew quadrupole correctors. Analyti-
cal expressions to evaluate the effectiveness of the correc-
tions are derived as well. The transport along the machine
of the magnet errors and misalignments are considered at
first order. A perturbative approach is used to take into ac-
count the effect of a non zero central trajectory in the mul-
tipoles. The coupling correction is obtained by minimizing
the cross-talk central trajectory matrix.

INTRODUCTION

Traditionally the statistical analysis of the impact of the
magnet errors and misalignments on the optics design of
a machine are done by tracking and Monte Carlo meth-
ods [1]. During the preliminary optics design phase, a
faster technique can be useful to evaluate the order of mag-
nitude and the effectiveness of the correction system. We
derive the analytical expression of the central trajectory at
any point as the summation of the transfer along the ma-
chine of the kicks due to the magnet errors and misalign-
ments. We treat all the errors in the approximation of thin
lenses. First we assume we do not have any coupling terms.
The strength of the dipolar correctors as a function of mag-
net errors and misalignments is derived and the expression
for their statistical treatment is provided. The central tra-
jectory after the dipolar correction is used to derive the an-
alytical expression of the trajectory in presence of coupling
terms. The coupling correction is obtained by minimizing
the cross-talk central trajectory matrix [2]. The effective-
ness of the correction is evaluated by the statistical treat-
ment of the beam emittances in presence of coupling er-
rors. In the following we start with the description of the
orbit correction and then we treat the coupling correction.

ORBIT CORRECTION

The transverse trajectories x and y at the BPM position i

can be expressed as a linear combination of dipolar kicks:

zi =
∑
e

czieθ
z
e +

∑
c

czicC
z
c + δzi, z = x, y (1)

where, θze are the integrated dipolar kicks in the two trans-
verse planes due to magnet errors and misalignments at the
location e. Cz

c are the strengths of the dipolar correctors
at the location c in the two transverse planes. The coef-
ficients czim are the first order terms of transport from the
location m of the errors or of the correctors to the location
i of the observation (at the BPM). For a circular machine

they are [3]:

czim =
√
βz,iβz,m

cos(πμz − |φz,i − φz,m|)
2 sin(πμz)

where βz ,φz and μz are the betatron Twiss function, the
betatron phase advance and the tune of the unperturbed
structure. Finally, δzi are the BPM misalignments in the
two transverse planes. Each dipolar corrector strength is
obtained by solving the system in Eq. (1) with respect to
the correctors in the two planes. The system can be solved
by using the Singular Value Decomposition (SVD) or by
minimizing the sum of the square of the central trajecto-
ries on all the BPM

∑
i(zi − ztarget,i)

2 (LMS). The dipolar
corrector strengths can be then written in the general form:

Cz
c =

∑
e

F z
c,eθ

z
e +

∑
i

Dz
c,i(Ztarget,i − δzi) (2)

where the matrices F z and Dz , depend on the transfer co-
efficients of the errors, correctors and on the chosen method
of minimization. θze are the errors and Ztarget are the desired
trajectories values at the BPM, commonly they are null.

Statistical Treatment

We apply statistical rules on the errors and misalign-
ments to obtain statistical prediction on the needed dipo-
lar corrector strengths and on the residual central trajectory
after correction. We assume that:

• the errors and the misalignment have a mean value
equal to zero;

• the errors are uncorrelated.

The mean value of the corrector strength is then:

〈Cz
c 〉 =

∑
i

Dz
c,iZtarget,i

and the variance value of the corrector strength is:〈
(Cz

c− < Cz
c >)2

〉
=

∑
e

(F z
c,eσ

z
e )

2

+
∑
i

(Dz
c,iσδz,i)

2

where, σz
e are the estimated RMS for each of the error or

misalignment distribution considered and σδz are the as-
sumed BPM errors. The residual central trajectory is ex-
pressed by replacing the corrector strengths in Eq. (1) with
the expression in Eq. (2). The effectiveness of the correc-
tion is then evaluated by the calculation of the mean and
the RMS values of the residual central trajectory:

〈zi〉 =
∑
c

∑
i′

czicD
z
c,i′Ztarget,i′
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The mean values of the residual central trajectory after the
correction depend on the wanted central trajectory at the
BPM.〈

(zi − 〈zi〉)2
〉
=
∑
e

((czie +
∑
c

czicF
z
c,e)σ

z
e )

2

+
∑
i′

((δi,i′ +
∑
c

czc,i′D
z
c,i′)σδz,i′ )

2

The variance values of the residual central trajectory after
the correction depend linearly on the variance of the errors.

COUPLING CORRECTION

In the case of coupling we add to the central trajectory
the perturbative terms. We limit our coupling evaluation
to the tilt of quadrupoles, and the misalignments of the
sextupole and the residual orbit in the sextupoles. Given
the integrated strength of the quadrupoles Kq and the tilt
error of the quadrupole φq , the dipolar kicks induced by
the quadrupole tilt along x and y are Kqφq(yq + δyq) and
Kqφq(xq + δxq), respectively. Where yq, xq are the resid-
ual central trajectories in the two transverse planes at the
quadrupole location and δyq, δxq are the quadrupole mis-
alignment. Similarly −Hh((xh + δxh)

2 − (yh + δyh)
2)

and 2Hh(xh + δxh)(yh + δyh) are the dipolar kicks in-
duced by the sextupole in the x and y planes, respectively.
Where Hh is the sextupole integrated strength at the po-
sition h, yh, xh are the extensions of the residual central
trajectories in the two transverse planes at the sextupole lo-
cation, and δxh, δyh are the sextupole misalignments. We
call Nt the skew quadrupole corrector integrated strength
at the position t. Ntyt and Ntxt are the dipolar kicks in-
duced by the skew quadrupole correctors along x and y,
respectively. Thus the central trajectory in the two planes
writes:

xi =
∑
e

cxieθ
x
e +

∑
c

cxicC
x
c + δxi +

∑
t

cxitNtyt

+
∑
q

cxieKqφq(yq + δyq)

−
∑
h

cxieHh((xh + δxh)
2 − (yh + δyh)

2)

yi =
∑
e

c
y
ieθ

y
e +

∑
c

c
y
icC

y
c + δyi +

∑
t

c
y
itNtxt

+
∑
q

c
y
iqKqφq(xq + δxq)

+2
∑
h

c
y
ihHh(xh + δxh)(yh + δyh)

(3)

We assume that the central trajectories (xn, yn) at the
quadrupoles, at the skew correctors and at the sextupoles
locations, are given by the first approximation of the dipo-
lar correction in Eq. (1). In order to correct the coupling we
want to minimize the cross talk matrix [2], which means
that the horizontal dipolar correctors have no effect in the

vertical plane at the BPM location, and viceversa. Thus the
skew quadrupole correctors can be calculated by solving
(SVD) or minimizing (LMS) a system of the type:{

∂xi

∂Cy
c
= 0

∂yi

∂Cx
c
= 0

Which leads to the following expression for the skew
quadrupole correctors:

�Nt = M ·

⎛
⎜⎜⎝

G1(θ
y
e )

G2(φq)
G3(δyh)

G4(ytarget,i − δyi)

⎞
⎟⎟⎠ (4)

= M · �Ne

As in the orbit correction the matrix M and the functions
Gn depend on the transfer coefficients of the errors and of
the correctors, and on the solving method. In the following
we will use �Ne to express the amplitude of the skew errors.
The same statistical rules used for the dipolar correctors
can be applied to the skew correctors.

Coupling Evaluation

An approach of the coupling is given in [4, 5, 6]. It con-
sists in developing the motion on a basis of eigen vectors
of the transfer matrix. The motion invariants of the parti-
cle are explicitly given as a function of its initial positions.
It is then possible to make a statistical calculation of the
mean motion invariant and then to evaluate the effect of
the errors. The method developed in [4, 5, 6] uses for the
calculation the beam matched to a structure without any er-
ror. Therefore, the growth of the motion invariant can come
from beta-beating, as the beam is not matched to a structure
with errors, and not necessarily from coupling alone. We
consider here a beam adapted to the perturbed structure and
we propose to characterize the coupling by studying the ra-
tio of the projected emittance over the intrinsic one.

The matrix of an error e can be written under the shape
Re = 1+NeδRe and

δRe =

⎛
⎜⎜⎝
0 0 0 0
0 0 1 0
0 0 0 0
1 0 0 0

⎞
⎟⎟⎠

Let be R the one-turn transfer matrix around the closed
orbit. The matrix R is symplectic, which implies that its
eigen values are λ1 = eıμ1 , λ2 = e−ıμ1 , λ3 = eıμ2 ,
λ4 = e−ıμ2 . The reals μ1 and μ2 are the tunes of the struc-
ture. We shall note μx and μy the tunes of the structure
without any error. Let be V1 and V3 two eigen vectors for
R and respectively for the eigen values λ1 and λ3. It is
straightforward that V2 = V1 and V4 = V3 are two eigen
vectors for R and respectively for the eigen values λ1 and
λ3. An expression of these eigen vectors is given in [6].
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The matrix R can be then written:

R = MV ·

⎛
⎜⎜⎝
eıμ1 0 0 0
0 e−ıμ1 0 0
0 0 eıμ2 0
0 0 0 e−ıμ2

⎞
⎟⎟⎠ ·M−1

V

with
MV =

(
V1 V2 V3 V4

)
Let be J2 =

(
0 1
−1 0

)
and J4 =

(
J2 0
0 J2

)
. We have

the property:

M∗

V · J4 ·MV =

(
(V ∗1 · J4 · V2)J2 0

0 (V ∗3 · J4 · V4)J2

)

Let be W1 = V1

(V ∗

1
·J4·V2)

1/2 and W3 = V3

(V ∗

3
·J4·V4)

1/2 .

By this way, the matrix MW =
(
W1 W1 W3 W3

)
is symplectic. Consider now a beam perfectly matched
with the structure with the intrinsic emittance ε1 and ε2.
The matched beam matrix Σ is then:

Σ = MW ·

⎛
⎜⎜⎝
ε1 0 0 0
0 ε1 0 0
0 0 ε2 0
0 0 0 ε2

⎞
⎟⎟⎠ ·M∗

W

=

(
Σxx Σxy

ΣT
xy Σyy

)

By definition, the projected emittances εx and εy are
εx =

√
detΣxx and εy =

√
detΣyy . After calculation,

we find by using the expression of the eigen vectors given
in [6] and by keeping only the error terms of order 2:

εx = ε1 +
ε1 + ε2

16 sin2 μ+

|A+|2 + ε2 − ε1

16 sin2 μ−
|A−|2 (5)

εy = ε2 +
ε1 + ε2

16 sin2 μ+

|A+|2 − ε2 − ε1

16 sin2 μ−
|A−|2 (6)

εxεy = ε1ε2 +
(ε1 + ε2)

2

16 sin2 μ+

|A+|2 + (ε2 − ε1)
2

16 sin2 μ−
|A−|2 (7)

where:

μ± =
μx ± μy

2

A± =
∑
e

Ne

√
βx,eβy,ee

ı(φx,e±φy,e)

+
∑
t

Nt

√
βx,tβy,te

ı(φx,t±φy,t) (8)

The Eq. (7) implies that the product of the projected
emittances is always greater than the product of the intrin-
sic emittances, which is expected according to Rivkin’s in-
equality. Moreover, the Eq. (5) and (6) show that |A+|2
gives the amplitude of the excitation due to the sum reso-
nance μx + μy whereas |A−|2 is linked to the difference
resonance μx−μy. First of all, if we consider the structure

without any skew quadrupole corrector (Nt), as the errors
Ne are uncorrelated, we have:〈|A+|2

〉
=

〈|A−|2〉 =
∑
e

〈N2
e 〉βx,eβy,e

The mean projected emittances before correction are then:

〈εx〉 = ε1 +

[
ε1 + ε2

16 sin2 μ+

+
ε2 − ε1

16 sin2 μ−

]∑
e

〈N2
e 〉βx,eβy,e

〈εy〉 = ε2 +

[
ε1 + ε2

16 sin2 μ+

− ε2 − ε1

16 sin2 μ−

]∑
e

〈N2
e 〉βx,eβy,e

Introducing the correction given by Eq. (4) in Eq. (8), we
have finally:

〈|A±|2〉 = ∑
e

〈
N2

e

〉{
βx,eβy,e +

∑
t

[
M2

teβx,tβy,t+

2Mteβ
1/2
x,t β

1/2
y,t

[
β1/2
x,e β

1/2
y,e cos (ψx,te ± ψy,te)+∑

t′>t

Mt′eβ
1/2
x,t′β

1/2
y,t′ cos (ψx,tt′ ± ψy,tt′)

]]}
(9)

with:

ψx,ab = φx,a − φx,b

ψy,ab = φy,a − φy,b

The statistics on the projected emittance is then directly
deduced by putting the expression of

〈|A±|2〉 given in the
Eq. (9) in the Eq. (5) and (6).
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