ANALYTICAL METHODS FOR STATISTICAL ANALYSIS OF THE CORRECTION OF COUPLING DUE TO ERRORS

A. Chancé, B. Dalena and J. Payet, CEA/SACLAY, DSM/Irfu/SACM, Gif-sur-Yvette, France

Abstract

We study an analytical method to derive the strengths of the dipolar and skew quadrupole correctors. Analytical expressions to evaluate the effectiveness of the corrections are derived as well. The transport along the machine of the magnet errors and misalignments are considered at first order. A perturbative approach is used to take into account the effect of a non zero central trajectory in the multipoles. The coupling correction is obtained by minimizing the cross-talk central trajectory matrix.

INTRODUCTION

Traditionally the statistical analysis of the impact of the magnet errors and misalignments on the optics design of a machine are done by tracking and Monte Carlo methods [1]. During the preliminary optics design phase, a faster technique can be useful to evaluate the order of magnitude and the effectiveness of the correction system. We derive the analytical expression of the central trajectory at any point as the summation of the transfer along the machine of the kicks due to the magnet errors and misalignments. We treat all the errors in the approximation of thin lenses. First we assume we do not have any coupling terms. The strength of the dipolar correctors as a function of magnet errors and misalignments is derived and the expression for their statistical treatment is provided. The central trajectory after the dipolar correction is used to derive the analytical expression of the trajectory in presence of coupling terms. The coupling correction is obtained by minimizing the cross-talk central trajectory matrix [2]. The effectiveness of the correction is evaluated by the statistical treatment of the beam emittances in presence of coupling errors. In the following we start with the description of the orbit correction and then we treat the coupling correction.

ORBIT CORRECTION

The transverse trajectories x and y at the BPM position i can be expressed as a linear combination of dipolar kicks:

$$
\begin{equation*}
z_{i}=\sum_{e} c_{i e}^{z} \theta_{e}^{z}+\sum_{c} c_{i c}^{z} C_{c}^{z}+\delta z_{i}, \quad z=x, y \tag{1}
\end{equation*}
$$

where, θ_{e}^{z} are the integrated dipolar kicks in the two transverse planes due to magnet errors and misalignments at the location $e . C_{c}^{z}$ are the strengths of the dipolar correctors at the location c in the two transverse planes. The coefficients $c_{i m}^{z}$ are the first order terms of transport from the location m of the errors or of the correctors to the location i of the observation (at the BPM). For a circular machine

The mean values of the residual central trajectory after the correction depend on the wanted central trajectory at the BPM.

$$
\begin{aligned}
\left\langle\left(z_{i}-\left\langle z_{i}\right\rangle\right)^{2}\right\rangle= & \sum_{e}\left(\left(c_{i e}^{z}+\sum_{c} c_{i c}^{z} F_{c, e}^{z}\right) \sigma_{e}^{z}\right)^{2} \\
& +\sum_{i^{\prime}}\left(\left(\delta_{i, i^{\prime}}+\sum_{c} c_{c, i^{\prime}}^{z} D_{c, i^{\prime}}^{z}\right) \sigma_{\delta z, i^{\prime}}\right)^{2}
\end{aligned}
$$

The variance values of the residual central trajectory after the correction depend linearly on the variance of the errors.

COUPLING CORRECTION

In the case of coupling we add to the central trajectory the perturbative terms. We limit our coupling evaluation to the tilt of quadrupoles, and the misalignments of the sextupole and the residual orbit in the sextupoles. Given the integrated strength of the quadrupoles K_{q} and the tilt error of the quadrupole ϕ_{q}, the dipolar kicks induced by the quadrupole tilt along x and y are $K_{q} \phi_{q}\left(y_{q}+\delta y_{q}\right)$ and $K_{q} \phi_{q}\left(x_{q}+\delta x_{q}\right)$, respectively. Where y_{q}, x_{q} are the residual central trajectories in the two transverse planes at the quadrupole location and $\delta y_{q}, \delta x_{q}$ are the quadrupole misalignment. Similarly $-H_{h}\left(\left(x_{h}+\delta x_{h}\right)^{2}-\left(y_{h}+\delta y_{h}\right)^{2}\right)$ and $2 H_{h}\left(x_{h}+\delta x_{h}\right)\left(y_{h}+\delta y_{h}\right)$ are the dipolar kicks induced by the sextupole in the x and y planes, respectively. Where H_{h} is the sextupole integrated strength at the position h, y_{h}, x_{h} are the extensions of the residual central trajectories in the two transverse planes at the sextupole location, and $\delta x_{h}, \delta y_{h}$ are the sextupole misalignments. We call N_{t} the skew quadrupole corrector integrated strength at the position $t . N_{t} y_{t}$ and $N_{t} x_{t}$ are the dipolar kicks induced by the skew quadrupole correctors along x and y, respectively. Thus the central trajectory in the two planes writes:

$$
\begin{align*}
x_{i}= & \sum_{e} c_{i e}^{x} \theta_{e}^{x}+\sum_{c} c_{i c}^{x} C_{c}^{x}+\delta x_{i}+\sum_{t} c_{i t}^{x} N_{t} y_{t} \\
& +\sum_{q} c_{i e}^{x} K_{q} \phi_{q}\left(y_{q}+\delta y_{q}\right) \\
& -\sum_{h} c_{i e}^{x} H_{h}\left(\left(x_{h}+\delta x_{h}\right)^{2}-\left(y_{h}+\delta y_{h}\right)^{2}\right) \\
y_{i}= & \sum_{e} c_{i e}^{y} \theta_{e}^{y}+\sum_{c} c_{i c}^{y} C_{c}^{y}+\delta y_{i}+\sum_{t} c_{i t}^{y} N_{t} x_{t} \\
& +\sum_{q} c_{i q}^{y} K_{q} \phi_{q}\left(x_{q}+\delta x_{q}\right) \\
& +2 \sum_{h} c_{i h}^{y} H_{h}\left(x_{h}+\delta x_{h}\right)\left(y_{h}+\delta y_{h}\right) \tag{3}
\end{align*}
$$

We assume that the central trajectories $\left(x_{n}, y_{n}\right)$ at the quadrupoles, at the skew correctors and at the sextupoles locations, are given by the first approximation of the dipolar correction in Eq. (1). In order to correct the coupling we want to minimize the cross talk matrix [2], which means that the horizontal dipolar correctors have no effect in the
vertical plane at the BPM location, and viceversa. Thus the skew quadrupole correctors can be calculated by solving (SVD) or minimizing (LMS) a system of the type:

$$
\left\{\begin{array}{l}
\frac{\partial x_{i}}{\partial C_{i}^{y}}=0 \\
\frac{\partial y_{i}^{c}}{\partial C_{c}^{x}}=0
\end{array}\right.
$$

Which leads to the following expression for the skew quadrupole correctors:

$$
\begin{align*}
\vec{N}_{t} & =M \cdot\left(\begin{array}{c}
G_{1}\left(\theta_{e}^{y}\right) \\
G_{2}\left(\phi_{q}\right) \\
G_{3}\left(\delta y_{h}\right) \\
G_{4}\left(y_{\text {target }, i}-\delta y_{i}\right)
\end{array}\right) \tag{4}\\
& =M \cdot \vec{N}_{e}
\end{align*}
$$

As in the orbit correction the matrix M and the functions G_{n} depend on the transfer coefficients of the errors and of the correctors, and on the solving method. In the following we will use \vec{N}_{e} to express the amplitude of the skew errors. The same statistical rules used for the dipolar correctors can be applied to the skew correctors.

Coupling Evaluation

An approach of the coupling is given in [4, 5, 6]. It consists in developing the motion on a basis of eigen vectors of the transfer matrix. The motion invariants of the particle are explicitly given as a function of its initial positions. It is then possible to make a statistical calculation of the mean motion invariant and then to evaluate the effect of the errors. The method developed in $[4,5,6]$ uses for the calculation the beam matched to a structure without any error. Therefore, the growth of the motion invariant can come from beta-beating, as the beam is not matched to a structure with errors, and not necessarily from coupling alone. We consider here a beam adapted to the perturbed structure and we propose to characterize the coupling by studying the ratio of the projected emittance over the intrinsic one.

The matrix of an error e can be written under the shape $R_{e}=1+N_{e} \delta R_{e}$ and

$$
\delta R_{e}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Let be R the one-turn transfer matrix around the closed orbit. The matrix R is symplectic, which implies that its eigen values are $\lambda_{1}=e^{\imath \mu_{1}}, \lambda_{2}=e^{-\imath \mu_{1}}, \lambda_{3}=e^{\imath \mu_{2}}$, $\lambda_{4}=e^{-\imath \mu_{2}}$. The reals μ_{1} and μ_{2} are the tunes of the structure. We shall note μ_{x} and μ_{y} the tunes of the structure without any error. Let be V_{1} and V_{3} two eigen vectors for R and respectively for the eigen values λ_{1} and λ_{3}. It is straightforward that $V_{2}=\overline{V_{1}}$ and $V_{4}=\overline{V_{3}}$ are two eigen vectors for R and respectively for the eigen values $\overline{\lambda_{1}}$ and $\overline{\lambda_{3}}$. An expression of these eigen vectors is given in [6].

The matrix R can be then written:

$$
R=M_{V} \cdot\left(\begin{array}{cccc}
e^{\imath \mu_{1}} & 0 & 0 & 0 \\
0 & e^{-\imath \mu_{1}} & 0 & 0 \\
0 & 0 & e^{\imath \mu_{2}} & 0 \\
0 & 0 & 0 & e^{-\imath \mu_{2}}
\end{array}\right) \cdot M_{V}^{-1}
$$

with

$$
M_{V}=\left(\begin{array}{llll}
V_{1} & V_{2} & V_{3} & V_{4}
\end{array}\right)
$$

Let be $J_{2}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and $J_{4}=\left(\begin{array}{cc}J_{2} & 0 \\ 0 & J_{2}\end{array}\right)$. We have the property:
$\epsilon_{x}=\sqrt{\operatorname{det} \Sigma}$, we find by using the expression of the eigen vectors given in [6] and by keeping only the error terms of order 2 :

$$
\begin{align*}
\epsilon_{x} & =\epsilon_{1}+\frac{\epsilon_{1}+\epsilon_{2}}{16 \sin ^{2} \mu_{+}}\left|A_{+}\right|^{2}+\frac{\epsilon_{2}-\epsilon_{1}}{16 \sin ^{2} \mu_{-}}\left|A_{-}\right|^{2} \tag{5}\\
\epsilon_{y} & =\epsilon_{2}+\frac{\epsilon_{1}+\epsilon_{2}}{16 \sin ^{2} \mu_{+}}\left|A_{+}\right|^{2}-\frac{\epsilon_{2}-\epsilon_{1}}{16 \sin ^{2} \mu_{-}}\left|A_{-}\right|^{2} \tag{6}\\
\epsilon_{x} \epsilon_{y} & =\epsilon_{1} \epsilon_{2}+\frac{\left(\epsilon_{1}+\epsilon_{2}\right)^{2}}{16 \sin ^{2} \mu_{+}}\left|A_{+}\right|^{2}+\frac{\left(\epsilon_{2}-\epsilon_{1}\right)^{2}}{16 \sin ^{2} \mu_{-}}\left|A_{-}\right|^{2} \tag{7}
\end{align*}
$$

where:

$$
\begin{align*}
\mu_{ \pm} & =\frac{\mu_{x} \pm \mu_{y}}{2} \\
A_{ \pm} & =\sum_{e} N_{e} \sqrt{\beta_{x, e} \beta_{y, e}} e^{\imath\left(\phi_{x, e} \pm \phi_{y, e}\right)} \\
& +\sum_{t} N_{t} \sqrt{\beta_{x, t} \beta_{y, t}} e^{\imath\left(\phi_{x, t} \pm \phi_{y, t}\right)} \tag{8}
\end{align*}
$$

The Eq. (7) implies that the product of the projected emittances is always greater than the product of the intrinsic emittances, which is expected according to Rivkin's inequality. Moreover, the Eq. (5) and (6) show that $\left|A_{+}\right|^{2}$ gives the amplitude of the excitation due to the sum resonance $\mu_{x}+\mu_{y}$ whereas $\left|A_{-}\right|^{2}$ is linked to the difference resonance $\mu_{x}-\mu_{y}$. First of all, if we consider the structure
without any skew quadrupole corrector $\left(N_{t}\right)$, as the errors N_{e} are uncorrelated, we have:

$$
\left.\left.\left.\langle | A_{+}\right|^{2}\right\rangle=\left.\langle | A_{-}\right|^{2}\right\rangle=\sum_{e}\left\langle N_{e}^{2}\right\rangle \beta_{x, e} \beta_{y, e}
$$

The mean projected emittances before correction are then:

$$
\left\langle\epsilon_{x}\right\rangle=\epsilon_{1}+\left[\frac{\epsilon_{1}+\epsilon_{2}}{16 \sin ^{2} \mu_{+}}+\frac{\epsilon_{2}-\epsilon_{1}}{16 \sin ^{2} \mu_{-}}\right] \sum_{e}\left\langle N_{e}^{2}\right\rangle \beta_{x, e} \beta_{y, e}
$$

$$
\left\langle\epsilon_{y}\right\rangle=\epsilon_{2}+\left[\frac{\epsilon_{1}+\epsilon_{2}}{16 \sin ^{2} \mu_{+}}-\frac{\epsilon_{2}-\epsilon_{1}}{16 \sin ^{2} \mu_{-}}\right] \sum_{e}\left\langle N_{e}^{2}\right\rangle \beta_{x, e} \beta_{y, e}
$$

Introducing the correction given by Eq. (4) in Eq. (8), we have finally:

$$
\begin{array}{r}
\left.\left.\langle | A_{ \pm}\right|^{2}\right\rangle=\sum_{e}\left\langle N_{e}^{2}\right\rangle\left\{\beta_{x, e} \beta_{y, e}+\sum_{t}\left[M_{t e}^{2} \beta_{x, t} \beta_{y, t}+\right.\right. \\
2 M_{t e} \beta_{x, t}^{1 / 2} \beta_{y, t}^{1 / 2}\left[\beta_{x, e}^{1 / 2} \beta_{y, e}^{1 / 2} \cos \left(\psi_{x, t e} \pm \psi_{y, t e}\right)+\right. \\
\left.\left.\left.\quad \sum_{t^{\prime}>t} M_{t^{\prime} e} \beta_{x, t^{\prime}}^{1 / 2} \beta_{y, t^{\prime}}^{1 / 2} \cos \left(\psi_{x, t t^{\prime}} \pm \psi_{y, t t^{\prime}}\right)\right]\right]\right\} \tag{9}
\end{array}
$$

with:

$$
\begin{aligned}
\psi_{x, a b} & =\phi_{x, a}-\phi_{x, b} \\
\psi_{y, a b} & =\phi_{y, a}-\phi_{y, b}
\end{aligned}
$$

The statistics on the projected emittance is then directly deduced by putting the expression of $\left.\left.\langle | A_{ \pm}\right|^{2}\right\rangle$ given in the Eq. (9) in the Eq. (5) and (6).

REFERENCES

[1] P. Nghiem et al., Nucl. Instr. and Meth. A 480, 339 (2002).
[2] J. Safranek, S. Krinsky, " Plans to Increase Source Brightness of NSLS X-Ray Ring", APAC 1993.
[3] G. Leleux, P. Nghiem, " Défauts Dipolaires et Quadrupolaires dans une Ligne de Transport ", Rapport Interne LNS/GT/91-02.
[4] A. Loulergue, J. Payet, " Correction of the betatron coupling by local orbit cross talk", PAC 1999.
[5] A. Loulergue, J. Payet, "Correction of vertical dispersion and betatron coupling for SOLEIL storage ring", PAC 1999.
[6] A. Loulergue, J. Payet, " Traitement analytique et statistique du couplage bêtatron", DAPNIA/SEA 99/02.

