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Abstract

To search the electric dipole moment was proposed to
use polarized protons at the so-called ”magic” momentum
of 0.7 GeV/c in an electric storage ring [1]. For study-
ing beam dynamics in electrostatic rings different compu-
tational methods can be used. We used differential alge-
bra methods realized in COSY Infinity and integrating pro-
gram with symplectic Runge-Kutta methods. These meth-
ods were observed and compared for orbital and spin mo-
tion.

INTRODUCTION

The results of numerical modeling and comparative
analysis of long-term evolution of the particle dynamics in
electrostatic fields are presented. The goal of the research is
to study how the spin tracking results, obtained with COSY
Infinity program, coincide with the results of direct inte-
grating of motion and spin equations. Effective in sense of
performance algorithm that used in COSY Infinity, can be
tested with less efficient, but accurate traditional algorithm
of numerical simulation based on the Runge-Kutta scheme.
In both cases the symplectic version of the algorithms are
used, and in step-by-step integration additional conditions
are taken into account for corresponding to energy conser-
vation.

COSY INFINITY

To confirm analytical calculations we need to do long
term (hundreds of millions turns or even more) tracking of
bunch of particles. Full spin-tracking simulations of the
entire experiment are absolutely crucial to explore in a sys-
tematic way the feasibility of the planned experiments.

One of the program that can simulate particle evolution
both in phase and spin spaces is COSY Infinity. COSY
Infinity is a code for the simulation, analysis and de-
sign of particle optical systems, based on differential al-
gebraic methods [2]. It is planned to use the COSY In-
finity program and to include higher-order nonlinearities,
normal form analysis, symplectic tracking and especially
spin tracking upon incorporation of RF-E and RF-B flip-
pers into the code. In order to study subtle effects and sim-
ulate the particle and especially spin dynamics during the
storage and build-up of the EDM signal, one needs custom-
tailored fast trackers capable of following up to 10–100 bil-
lions turns for samples of up to 104–106 particles.

COSY Infinity operates with phase coordinates:

r1 = x, r2 = a =
px
p0

r3 = y, r4 = b =
py
p0

r5 = l = − (t−t0)v0γ
1+γ , r6 = δK =

K −K0

K0
, (1)

and finds the solution in form

X = M
1X0+M

2X0
[2]+M

3X0
[3]+. . .+M

NX0
[N ]. (2)

Here x and y are the horizontal and vertical distances to
the optic axis, respectively. The quantities p0, v0, K0 de-
note momentum, velocity and kinetic energy of the refer-
ence particle, and p, v, K stand for the same quantities of
the particle under consideration. X[N ] = X⊗ . . .⊗X

︸ ︷︷ ︸

Ntimes

—

Kronecker power of X. Xk is a vector with Ck
6+k−1 ele-

ments. MatricesMk have dimensions 6×Ck
6+k−1. Transfer

maps Mk can be generated up to any order.
And for spin motion we have initial spin coordinates:

S0 =

⎛

⎝

Sx0

Sy0

Sz0

⎞

⎠ , (3)

S2
x0

+ S2
y0

+ S2
z0 = 1.

Spin coordinates after one revolution:

S = MSS0, (4)

where MS — spin rotation matrix.
To simulate bunch of particles we used initial set of

particles with random distribution. We took the values
−3mm < x < 3mm, −0.001 < px < 0.001, y = 0,
py = 0, −2 · 10−4 < ΔE < 2 · 10−4, Sz = 1 (spin of
all particles oriented along the reference orbit, so Sz = 1,
Sx = Sy = 0).

For this initial set we used COSY Infinity to track the
evolution for two million of turns in different lattices. The
final spin distribution (after evolution in optimized struc-
ture with customly shaped deflectors, see [3]) is repre-
sented on the Figure (1). X-axis is a particle number and
Y-axis shows Sx component of spin vector. There are Sx

coordinates of 32768 particles with RMS less than 1 mrad
which means that for one billion of turns RMS should be
less than 1 radian.

Calculation of a million or turns takes less than one hour
and one can use a compute cluster to calculate a long-term
evolution of bunch of particles in reasonable time.
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Figure 1: Spin distribution after 2 million turns.

TRACKING APPROACH

To simulate the beam dynamics in electrostatic we used a
program for step-by-step symplectic integration of motion
equations and spin equations. Dynamics of charge parti-
cle is described in generalized coordinates along a design
orbit. This section presents the basic equations of the mo-
tion and spin dynamics. Also integration scheme is briefly
discussed.

Orbital Motion

Derivation of the trajectory equations that describes the
orbital motion uses generalized coordinates [4]. In the re-
search we use (x, y, s) space, where s is independent vari-
able that equals to the length along the design orbit.

The design orbit is chosen in accordance to symmetry of
field distribution. For example, in quadrupole lenses it is
a straight line, in cylindrical or spherical deflectors it is an
arc of a circle.

In case of straight design orbit the motion is presented
as Newton-Lorentz equation in Cartesian space. When the
design orbit is a circle arc the equations are following:

x′′ +
1

γ

HG

v
x′ − (1 +

x

R
)
1

R
=

QH

m0v

1

γ
HEx/v,

y′′ +
1

γ

HG

v
y′ =

QH

m0v

1

γ
HEy/v, (5)

where H,G are functions of variable x, x′, y, y′, R, and R
is a curvature radius of the design orbit.

Spin Dynamics

Spin dynamics is described by the T–BMT equation.
Along the circle arc we have

S′
x = Ss/R +

Q

m0c2

(
G +

1

1 + γ

)(
(hsEx − x′Es)Ss −

−(x′Ey − y′Ex)Sy

)
,

S′
y =

Q

m0c2

(
G +

1

1 + γ

)(
(x′Ey − y′Ex)Sx − (6)

−(y′Es − hsEy)Ss

)
,

S′
s = −Sx/R +

Q

m0c2

(
G+

1

1 + γ

)(
(y′Es − hsEy)Sy −

−(hsEx − x′Es)Sx

)
,

where γ is Lorentz factor.

Symplectic Runge-Kutta Scheme

The equations (5) and (6) can be written as

d

ds
X = F(s,X), (7)

where X = (x, x′, y, y′, Sx, Sy, Ss).
It allows us to use classical step-by-step integration

methods to solve this system. As basic method for the
tracking program, a symplectic Runge-Kutta scheme was
implemented [5].

b1 + c̃1 b1/2 b1/2 + c̃1
b1 − c̃1 b1/2− c̃1 b1/2

b1 = 1/2, 2b1c̃1
2 = 1/12

Table 1: 2-stage 4-order implicit Runge-Kutta scheme.

According to this scheme (Table 1), the solution of the
equations (7) can be presented in iterative form

Xn+1 = Xn + h
∑2

j=1 bjF(s+ hcj ,X
(i)), (8)

X(i) = Xn + h
∑2

j=1 aijF(s+ hcj ,X
(i)).

Note that symplectic scheme (8) imposes the condition
of constant integration step. Moreover this scheme re-
quires to solve implicit equations and appropriate numer-
ical methods can be used.

MAIN GOALS

We have been studying the spin tracking problem in the
accelerators, in paper [6] we considered various causes
leading to aberrations of spin motion, we estimated their
values using simple analytic techniques and compared
them with numerical results obtained with the simulation
program COSY Infinity. Based on these results, we con-
sidered different methods to reduce spin aberrations — de-
sirable spin coherence time (time when RMS spin orienta-
tion of the bunch particles reaches one radian) is more than
1000 seconds. Now it is clear that obtaining desired spin
coherence time is possible [3] with custom shaped electro-
static plates, so we need to make calculations for several
different condenser shapes.

COMPARISON
To compare the computation results of both codes we

used the lattice with cylindrical deflectors, which was de-
scribed in [6]. Comparing the results of tracking through
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Figure 2: x–x′ motion in COSY Infinity.
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Figure 3: x–x′ motion in the integrating program.

a single element we found good coincidence in computa-
tional models of COSY Infinity and integrating program.
However the different choice of the reference orbits and
different simplectification methods doesn’t allow to obtain
the same numerical results, but we can compare dynamics
and behaviour of particles in both programs.

As initial values we used a particle without initial devia-
tion in x–x′ and y–y′ spaces, Δp/p = 10−4 and a particle
with initial deviation x = 3mm, Δp/p = 0 and tracked
for 10000 turns in the lattice without RF field. For these
cases we got almost the same results for spin coherence
time (for the first case 3292 seconds and 3658 seconds
respectively, for the second particle — 323 and 349 sec-
onds). After turning on RF field to average the motion in
longitudinal plane for particle without initial deviation and
with Δp/p = 10−4 we got SCT in COSY Infinity about
7300 seconds and in the integrating program about 9800
seconds.

On Figures 2, 3, 4, 5 one can see transverse and longi-
tudinal planes of motion in the lattice with turned RF field
turned on in both programs.

CONCLUSION
The results obtained in the both programs coincide with

each other, but some disagreements have been identified.
These disagreements come from the different choice of the
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Figure 4: Longitudinal plane in COSY Infinity.
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Figure 5: Longitudinal plane in the integrating program.

reference orbits and the different simplectification meth-
ods, but we have good coincidence in qualitative behaviour
of the orbital motion and SCT values coincide well. The
possible approaches for further verification are based on
alternative methods of integration that lead us to complex
investigation of numerical simulation results. Also we need
to study behaviour of orbital and spin motion in the lattice
with fringe fields because the fringe fields can significantly
affect spin motion.
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