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INTRODUCTION
The LIGHT project at GSI is a collaboration of sev-

eral laser and accelerator laboratories in Germany with the
purpose to consolidate the theoretical, numerical and ex-
perimental investigations for the usage of laser acceler-
ated ions in conventional accelerators. The acceleration
of ions with lasers up to energies of 60 MeV has been
successfully demonstrated at different laser systems world-
wide, including our facility: PHELIX [1]. The undergo-
ing mechanism is understood as Target Normal Sheath Ac-
celeration (TNSA) [2]. Due to the small transverse emit-
tance and low installation cost laser-ion acceleration is a
promising alternative to RF accelerators with the possi-
ble application in ion cancer therapy [3]. This contribu-
tion is devoted to the numerical investigation of the proton
acceleration via the TNSA mechanism using 1D and 2D
particle-in-cell electro-magnetic simulations. We employ
the plasma simulation code VORPAL [4] and focus on the
proton and electron phase-space distribution at the rear side
of the target. The lack of knowledge about the thickness
of hydrogen-rich contamination layer requires a detailed
parameter study. In this work we investigate the regime
between two already well-understood mechanisms: quasi-
static acceleration [5, 6] and isothermal expansion [7, 8].

DEBYE-SHEATH FORMATION ON THE
TARGET SURFACE

The initial target foil consists of heavy ions (they are
considered immobile), protons, cold and hot electrons.
Heavier light ions, like oxygen, carbon, we neglect in this
study. Due to their high energy the hot electrons can escape
from the target and build up a stable electric field, which
has an exact form outside, close to the plasma surface [9]:

E(x) = 2E0/(
√

2 exp(−ϕ0) +
x

λD
) (1)

where E0 =
√
nh0Th/ε0 is the self-similar electric field,

λD = (ε0Th/(enh0))
1/2 is the hot electron Debye-length

and nh0, Th are the hot electron density and temperature
inside the plasma. The corresponding potential is just the
integral of E:

ϕ(x) = ϕ0 − 2 ln(1 +
x

λD
√
2 exp(−ϕ0)

) (2)

The potential is normalized to Th/e, e is the elementary
charge, and at the plasma surface, ϕ0 = ϕ(x = 0), it has
the following value [9]:

ϕ0 = −1 + (nc0/nh0)(Tc/Th)

1 + nc0/nh0
(3)

where nc0, Tc are the cold electron density and tempera-
ture. The value of ϕ0 is −1 when the cold electron density
is zero (one-temperature plasma) and ≈ 0 when the cold
electron population becomes dominant. Usually the latter
is the case in the interaction of laser with overdense plasma.

Inside of the plasma, x < 0, the potential can not be
calculated analytically, but a mathematical approximation
suggests that it should be an exponential function of x [9]:

ϕin(x) ≈ ϕ0 exp(rx/λD) (4)

where r =
√

1 + (nc0/nh0)(Th/Tc). In our simulations
this expression is used to get an analytical expression for
the hot and cold electron density. It is needed to obtain an
initial thermal equilibrium for the electrons, which would
be achieved only after many plasma oscillations, if we used
a step-like density profile.

INITIAL CONDITIONS FOR THE
SIMULATION

We assume that the electrons have a Boltzmann distri-
bution: ne(x) = nh0 exp(ϕ(x)). Outside of the plasma,
x > 0, only hot electrons are present, therefore their den-
sity profile is trivial:

nh(x) = nh0
2

(
√
2e−ϕ0 + x/λD)2

(5)

The extension of the electron cloud depends on the max-
imum electron energy (εmax) and the correct shape of the
potential far from the target can not be calculated analyti-
cally [5]. In our simulations we use the profile Eq. 5 and
we define the end of the electron cloud as the point where
the potential is equal to εmax:

Le = λD
√

2 exp(−ϕ0)

(
exp

(
ϕ0 + εmax

2Th

)
− 1

)
(6)

For εmax we choose 7.5Th, it is a parameter which can be
varied and the initial Maxwellian velocity distribution of
electrons has to be truncated according to this cut-off en-
ergy. This value is close to the prediction of scaling laws
used by Passoni [6] if we use the laser parameters of PHE-
LIX at GSI. A higher value of εmax would require longer
simulation box, which means more CPU time for simula-
tions.

Inside of the plasma, x < 0, in the one-temperature (1T)
case the hot electron density is approximated using Eq. 4:

nh(x) = nh0 exp(ϕ0 exp(α r
√
2 exp(ϕ0)x/λD)) (7)
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where α must be calculated from the neutrality condition,
the total charge is zero in the system, and r = 1. In the
two-temperature (2T) plasma the cold electrons dominate
inside of the plasma, therefore for their density we use Eq.
7, but the potential is normalized by the cold temperature
and for the hot electrons we use a similar exponential func-
tion, obeying the correct boundary conditions for the elec-
tric field:

nh(x) = nh0 exp(
ϕ0

r
exp(

r

ϕ0

√
2 exp(ϕ0)x/λD)) (8)

In this way we can simulate a correct charge separation
at a plasma surface including one- or two-temperature elec-
trons, which are in thermal equilibrium.

The protons are initially placed in the interval x =
[−d, 0], where d is the layer thickness. The simulation pa-
rameters which we used: the total plasma length Lp/λD =
20 in 1T and 4 in 2T simulation, nc0/nh0 = 3, Tc/Th =
0.05. The heavy ions are placed in the interval [−Lp,−d].
Numerical parameters: grid size dx = λDc/10, where
λDc = (ε0Tc/(en0))

1/2, n0 = nc0 + nh0, in the 1T case
Tc = Th and nc0 = 0. Time step: dt = 0.9dx/c, where c
is the speed of light and the number of macro-particles per
cell is 1000. The plasma density is n0 = 1028 m−3 and the
hot electron temperature is Th = 104 eV.

QUASI-STATIC ACCELERATION VS.
ISOTHERMAL EXPANSION

As we have seen the electric field inside the has an expo-
nential form with a scale length equal to λD/r. Therefore
we introduce the dimensionless layer thickness,

D = r
d

λD
=

√
1 +

nc0Th
nh0Tc

d

λD
(9)

Let us consider a layer thickness much thinner than the
penetration depth of the electric field into the target. In
this case the protons are accelerated as test particles, all
of them feel the same field strength and finally they form a
quasi-mono-energetic bunch with energyWqsa = εmax−1
[5, 6]. In our case Wqsa ≈ 6.5, but in reality it depends on
the fast electron generation during the laser-plasma inter-
action. The corresponding velocity we can estimate as

vmax = 2Cs

√
ln(1 + Le/(λD

√
2e−ϕ0)) (10)

where Cs =
√
Th/mp, mp is the proton mass.

In the opposite extreme case, when D � 1, the protons
are accelerated via isothermal expansion [7], which can be
described analytically up to the point when the adiabatic
phase starts (the electron cooling is important) [8]. This
time is approximately the laser pulse duration, but in the
case of an expanding plasma slab the acceleration time is
tacc ≈ d/Cs. The final velocity can be estimated using the
following formula:

vf = 2Cs ln
(
τ +

√
1 + τ2

)
(11)

where τ = ωpit/
√
2e−ϕ0 , ωpi =

√
nh0q2e
mpε0

and qe is the
elementary charge.

In Fig. 1 we compare two extreme cases: mono-layer
of protons (D = 0.01) accelerated in the constant elec-
tric field achieving the final velocity Eq. 10, which gives
≈ 3.7Cs. The thick proton layer, D = 10, expands isother-
mally and the front velocity, presented by the black line,
agrees with Eq. 11 for ωpitacc ≈ 10.
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Figure 1: Maximum velocity of protons for D = 0.01 (—
), 0.5 (—), 10 (—) and mean velocity (dashed lines). The
blue line is the solution of equation of motion in the field
represented by Eq. 1. The red full line is given by Eq. 11.
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Figure 2: Left: Front velocity of the protons (black),
neutrality factor (red) defined as ne/np in the bunch and
RMS velocity (blue) at ωpit = 60 for 1T (full) and 2T
(dashed) plasma. Right: Final energy spectra of protons
for D = 0.01 (pink), 0.2 (red), 1 (blue) and 10 (black).

INTERMEDIATE LAYER THICKNESS
The acceleration in the intermediate regime can not be

described analyticaly. The simulation results are repre-
sented as a function of dimensionless layer thickness in
Fig. 1 and 2. There is a smooth transition between the
two models discussed in the previous section. In the case
of a very thin layer the accelerated protons form a quasi-
monoenergetic beam (pink line in Fig. 2, right) and in the
case of thick layer (black line) the spectrum is similar to an
exponential energy distribution [7].

For intermediate thicknesses the proton bunch detaches
from the target and gets accelerated in the static field un-
til it reaches the position xt. In Fig. 3, left we can see
that a bump appears in the potential (black curve) and the
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electron trapping starts. Later the proton bunch expands
and due to the trapped neutralizing electrons the potential
takes a constant value along the bunch, like in the case of
blue curve, but there the trapping started earlier. Thus be-
tween the plasma surface and bunch tail evolves a potential-
drop (φd). If we assume that the potential profile does not
change significantly before the electron trapping, φd can be
calculated using Eq. 2: φd = −ϕ(xt(d)) and it can be fit-
ted with the following function: xt(d) = a + b/(d + c),
where a, b, c are constants. A good fit can be seen in Fig.
3, right, with parameters : a = −0.4, b = 1.8, c = 0.025.
For thick layers the potential-drop converges to −ϕ0.
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Figure 3: Left: Modified potential profiles at ωpit = 14
in 1T plasma for d =0.05λD (black), 0.9λD (blue), 5λD
(red). The dashed line shows the initial profile (Eq. 2)
and the vertical lines indicate xt. The “x” marks show the
position of the bunch tail. Right: Potential drop measured
from 1T (red) and 2T (blue) simulations, the best fit (black
full line) with a fitting function.

Mostly the electrons with a kinetic energy higher than φd
contribute to the acceleration, which is confirmed in Fig. 4,
left. By integrating the Maxwellian energy distribution of
electrons from φd until εmax and dividing by the total ini-
tial electron energy we obtain the energy conversion from
the electrons to the protons as a function of D:

Wp =
2

Th

∫ εmax

eφd

Efe(E) dE (12)

where fe(E) = (
√
2π ThE)−1 exp(−E/Th). This expres-

sion is independent of the plasma, because φd is the same in
1T and 2T plasma, this is why we show only one blue line
in Fig. 4, right. The red lines represent the QSA regime:

Wp = 2(εmax − 1)
np
nh0

d

Lp
(13)

The energy conversion is better in the 2T case because the
total electron energy is smaller. In Fig. 4 the analytical
prediction Eq. 13 is correct in the small D regime, while
Eq. 12 agrees with the simulation only in the 1T case for
large D values, because in the 2T case φd goes to zero,
but our fit does not. The smaller the φd the more energy
is given to the protons, but the maximum velocity does not
increase significantly, as it is shown in Fig. 1, right. In the
isothermal expansion [7] the number of high energy pro-
tons is very small so the mean velocity is decreasing with
increasing the layer thickness. For a mono-layer the mean

velocity is almost equal to the maximum velocity, which
means no energy spread.

0 1 2 3 4 5 6
E/Th

1016

1017

1018

1019

d
N

/d
E

 (
a

. 
u

.)

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ
æ

0.01 0.05 0.10 0.50 1.00 5.00 10.00

0.01

0.02

0.05

0.10

0.20

0.50

1.00

D

W
p

Figure 4: Left: Electron spectra at the end of acceleration
for D = 0.1 (black), 0.22 (red) and 1 (blue). The dashed
lines indicate the corresponding potential-drops. Right: Fi-
nal proton energy over the initial total energy of electrons.
Simulation results are presented in 1T (black dots) and 2T
(cyan) case. The blue line represents Eq. 12 and the red
lines show Eq. 13 for 1T (full) and 2T (dashed) plasma.

As we can see in Eq. 12 the energy conversion for thick
layers does not depend on the plasma thickness (or laser
pulse duration). For thick layers the total proton energy de-
pends on the pulse duration, but for very thin layers a short
pulse is sufficient to gain the maximum energy (Wqsa).

CONCLUSIONS
The TNSA in the intermediate regime with respect to

the layer thickness has been studied including only protons
in the contamination layer on the target surface. By per-
forming a detailed parameter-scan using the VORPAL PIC
plasma simulation code we could describe the basic energy
conversion mechanism from electrons to the protons. The
potential drop φd has been fitted with an analytical curve.
In the two extreme cases, QSA and isothermal expansion,
the proton front velocity has been compared with analytical
predictions. Two important parameters determine the pro-
ton cut-off energy: maximum electron energy in the QSA
regime and laser pulse duration in the isothermal expan-
sion.
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