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Figure 3: Complex magnitude of the longitudinal 
component of electric field calculated in HFSS and 
ACE3P.  

 

Figure 4: Ez in complex plane calculated in HFSS and 
ACE3P.  

BEAM-LOADING 
To take into account higher-order modes excited by the 

beam, we have used the plane wave excitation in HFSS 
described in [3] in detail and illustrated in Fig. 1 (bottom). 
We have also used ACE3P and GdfidL to benchmark 
these results in time and frequency domains. Basic 
parameters of the performed simulations are gathered in 
the Table 1.  

Table 1: Simulation Setup 

Software Exterior Bunch, sigma Domain 

HFSS Copper  - Frequency 

ACE3P PEC 1mm Time 

GdfidL PEC 1mm Time 

 
In Fig. 5 we present beam coupling impedances as 

calculated in HFSS, ACE3P and GdfidL for the 12-26 
GHz frequency range. The first monopole HOM band has 
been identified between 23.5 and 26 GHz and presented 
in Fig. 6. It can be seen that ACE3P results are slightly 
different from the HFSS/GdfidL ones. Effect of detuning 
can also be clearly observed in this Fig 6. 

 

 

Figure 5: Beam coupling impedance as calculated in 
HFSS, ACE3P and GdfidL. 

 

Figure 6: Beam coupling impedance for the first 
monopole HOM band. 

In Fig. 7 we show envelope of the longitudinal wake as 
calculated in ACE3P and GdfidL. For HFSS we present 
convolution of wake function with 1 mm sigma bunch.  

 

Figure 7: Envelope of the longitudinal wake for HFSS, 
ACE3P and GdfidL. 

It can be seen that HFSS and GdfidL are consistent 
during the first 20ns, while ACE3P and GdfidL are in 
better agreement from 20ns up to filling time of the TD26 
structure (around 60ns) since they both have no Ohmic 
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losses included in the simulation setup. It worth also to 
mention that the GdfidL wake (green line in Fig.7) starts 
to rise after the filling time of the structure. We believe 
this to be a result of a mismatch of the coupler cells 
caused by the finite mesh size, 50 um in this case.  

In order to investigate energy spread in CLIC caused by 
the ACE3P and gdfidl wakes an additional dedicated 
study which involves simulations with the copper exterior 
is required. 

BEAM-LOADING COMPENSATION  
Here we consider an RF pulse shape developed in [3] to 

compensate for the energy spread in main beam to the 
CLIC required 0.03% energy (see Fig. 8). This pulse has 
been derived for 1 GHz bandwidth of the simulated beam 
coupling impedance in HFSS and is defined by the 
optimized buncher delays [3] and CLIC specific drive-
beam generation scheme [1].  

Figure 8: Input power of the CLIC optimized pulse. 

In Table 2 we show rms of the relative bunch-to-bunch 
energy spread in the main beam for this optimized pulse 
shape and fixed injection time of about 88ns for the 
fundamental mode (0.6 and 1 GHz bandwidths) and 
including the  first monopole HOM band (30 GHz 
bandwidth). In Fig. 9 we also present relative bunch-to-
bunch energy spread along the main beam. It can be seen 
that higher-order modes have almost no impact on the 
beam-loading compensation scheme and rms of the 
energy spread stays within the CLIC required 0.03% level 
even without any additional pulse shape/injection time 
optimization. 

 

Table 2: RMS of the relative bunch to bunch energy 
spread versus coupling impedance bandwidth simulated 
in HFSS 

Bandwidth, GHz rms(ΔE) /<E>, % 

0.6 0.0257 

1 0.0253 

30 0.0280 
 

Figure 9: Energy spread in the main beam taking into 
account only fundamental mode (0.6 GHz and 1GHz 
bandwidth’s) and including higher-order modes (30GHz 
bandwidth). 

CONCLUSIONS 
A comprehensive benchmark is performed for the 

unloaded voltage and for the longitudinal beam coupling 
impedances and wakes in the TD26 accelerating structure. 
The technique developed in [3] has been applied to 
investigate the effect of the higher-order modes on the 
beam-loading compensation scheme for CLIC. It was 
demonstrated that the first monopole HOM band still can 
be fully compensated by the RF pulse shape derived for 
the fundamental mode only. Modes with the frequencies 
higher than 30 GHz will have even smaller impedances 
and hence almost no impact on the energy spread on the 
level of 0.03%.  
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