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Abstract

A delay ring in the CLIC damping rings complex is

necessary for recombining the two trains to one with the

nominal bunch separation of 0.5ns. The preservation of

the longitudinal bunch distribution demands an optics de-

sign, which eliminates momentum compaction factor up

to high order, allowing the delay ring to function under

isochronous conditions. Taking into account thin lens ap-

proximation, a qualitative estimation of parameters of the

cell that will be used in the delay ring, is given, so as to ob-

tain isochronicity conditions. Considerations on the possi-

bility of tuning the cell under those requirements are finally

presented.

INTRODUCTION

For the consecutive recombination of both particle

species’ trains, a single delay ring is considered down-

stream of the CLIC damping rings, in order to form the

bunch pattern with 0.5 ns time structure, required by the

collider. In order to preserve the longitudinal beam charac-

teristics achieved in the damping rings, for the best col-

lider performance, and especially respect the tight syn-

chronous phase tolerance, the delay ring must function un-

der isochronous conditions. The conditions for the required

elimination of the momentum compaction factor up to sec-

ond order is studied in the case of a Theoretical Minimum

Emittance (TME) cell, for which a detailed optics analy-

sis can be found in [1]. In addition, sextupoles have been

added, to the analytical solution of the TME cell, to com-

pensate second order momentum compaction factor. In this

paper, the parametrisation of the components of the mo-

mentum compaction factor with respect to the TME cell’s

characteristics is being studied, using thin lens approxima-

tion. The optics functions at the centre of the bending mag-

net for achieving isochronicity conditions are estimated as

a function of the different drift space lengths, the dipole

characteristics and the sextupole strengths, bounded by the

required optics stability conditions.

MOMENTUM COMPACTION FACTOR

EQUATIONS FOR THE TME CELL

The main cell of the CLIC delay loop is chosen to be

the Theoretical Minimum Emittance (TME) cell, mainly

due to its compactness. A schematic layout of the cell

is shown in Fig. 1. It consists of one dipole D of length

ldip, two quadrupoles Q1 and Q2 of focal lengths f1 and

f2, two sextupoles, SX1 and SX2, with sextupole strengths

λ1 and λ2 and three drift spaces s1, s2, s3. An analytical

Figure 1: Schematic layout of the TME cell.

parametrisation of the TME cell is described in [1], where

the quadrupole focal lengths, in thin lens approximation,

are given by:

f1 =
s2(4s1ldip+l2dip+8ηc,xρ)

(4s1ldip+l2
dip

+8ηc,xρ)+4s2ldip−8ηsρ

f2 = − 8s2ηsρ

(4s1ldip+l2
dip

+8ηc,xρ)−8ηsρ

, (1)

where, ηs is the dispersion at the center of the cell, which

has a complicated dependence on s1, s2, s3 and also on

the dipole’s characteristics, the horizontal beta function at

the center of the dipole, βx,c, and the dispersion at the cen-

ter of the dipole, ηx,c. The dipole’s field was chosen to be

B=0.5 T, due to the fact that small magnetic field induces

large bending radius and smaller absolute values of zero or-

der momentum compaction factor, as showed in [3]. The

momentum compaction factor αc, with respect to the rela-

tive momentum deviation δ = δp/p, can be written in the

form:

αc = α0 + α1δ + α2δ
2 +O(δ3) (2)

where α0, α1, α2 are the zero, first and second order mo-

mentum compaction factors respectively and can be ex-

pressed as [2]:

α0 =
1

L

∫ L

0

(

η0
ρ

)

ds (3)

α1 =
1

L

∫ L

0

(

η1
2ρ

+
η′20
2

)

ds (4)

α2 =
1

L

∫ L

0

(

η2
ρ

−
η0 η

′2
0

2ρ
+ η′0 η

′

1

)

ds (5)

L is the length of the element at which each term is cal-

culated, η0, η1, η2 are zero, first and second order disper-

sion functions respectively and ρ the bending radius of the

dipole.

The dispersion functions of Eqs. (3), (4), (5), were ob-

tained for each element of the cell and for every order,
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by solving the differential equations describing their evo-

lution [2]. The propagation starts from the centre of the

dipole, where the derivative of the dispersion is zero [1]

until the point of symmetry, at the middle of the cell, i.e.

at the end of the drift space s3, where the derivative is also

zero.

ISOCHRONOUS CONDITIONS FOR THE

TME CELL

Zero Order Momentum Compaction Factor

The zero order momentum compaction factor for the

TME cell is [3]:

α0 =
24ηc,x−(ηc,x+ρ)θ2

24ρ
(6)

Setting α0 = 0 and solving Eq. (6) with respect to ηc,x, the

zero order isochronicity condition is:

ηc,x = θ2ρ
−24+θ2

(7)

The dispersion at the centre of the dipole, satisfying the

isochronicity condition, depends only on the dipole char-

acteristics and it is indeed negative for almost all reason-

able bending angles θ. Substituting Eq.(7) expression in

Eq.(1) the analytical expressions for f1, f2 that eliminate

α0 are obtained. Also by using Eq.(7) in the analytical ex-

pression of horizontal and vertical phase advances will lead

to expressions that induce zero order isochronicity. The

horizontal phase advance of the cell, eliminating α0, is ex-

pressed by:

cos(µx) =
−16β2

c,x(−24+θ2)2+θ2(−32+θ2)2ρ2

16β2
c,x(−24+θ2)2+θ2(−32+θ2)2ρ2

(8)

Fig. 2, presents the horizontal phase advance, µx, with

respect to the beta function at the center of the dipole, βc,x,

and for different bending angles, that satisfy the zero order

isochronicity condition.
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Figure 2: Horizontal phase advance µx versus horizontal

beta function at the dipole centre, for which the zero order

momentum compaction factor is eliminated.

Even though, by definition, the solutions in the horizon-

tal plane provide always stability, this is not the case for

the vertical plane. An analytical expression for the vertical

phase advance µy exists [1], parametrised with respect to

θ, ρ, f1, f2 and drift spaces s1, s2 and s3. Fig. 3, shows the

Figure 3: Drift lengths s1 (left) and s2 (right) with respect

to βc,x, achieving zero order isochronicity and satisfying

the stability condition in the vertical plane, for θ = π
20 .

Each color corresponds to different fixed values of s2, s3
(left) and s1, s3 (right).

regions of solutions that satisfy the stability criterion in the

vertical plane, | cosµy |≤ 1, for the drift lengths s1 (left)

and s2 (right), with respect to the horizontal beta function

at the dipole centre, for which α0 = 0. The dependence of

s3 to βc,x is similar with the one of s2. Each color corre-

sponds to different fixed values of s2, s3 (left) and s1, s3
(right). The trend shows, that for a fixed s3, higher values

of s2 impose higher s1 values for stability. The dependence

on βc,x is in general weak. For a fixed value of s1, smaller

values of s2 and larger of s3 satisfy the stability criterion.

First Order Momentum Compaction Factor

The first order momentum compaction factor, α1, can be

eliminated, only if the first term of Eq.(4), the dipole’s con-

tribution, becomes negative and equal to the second term,

which is called the wiggling part. Using thin lens approx-

imation, the dipole’s contribution to α1 can be expressed

as:

α1,dip = 9(−640+θ4)
10(−24+θ2)2

(9)

Figure 4: Top:Dipole’s contribution to α1 with respect to θ.

Bottom: The wiggling term contribution to α1, with respect

to the dipole’s bending angle.

Fig. 4 (top), shows the dipole contribution with respect
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to θ while, Fig. 4 (bottom), the contribution of the wig-

gling part with respect to θ, for different combinations of

s1, s2 and s3. The dipole contribution is always negative

and weakly depends on θ. Elimination of α1, lies on find-

ing appropriate combinations of the drift lengths and the

bending angle, for which the two terms have equal and op-

posite in sign contributions.

Calculating the integral of Eq. (4) along the TME cell,

using thin lens approximation, leads to an expression which

has a complicated dependence on θ, ρ, f1, f2. Combin-

ing the latest with Eq. (1), the first order momentum com-

paction factor with respect to the drift lengths, the dipole

characteristics and βc,x is obtained.

Fig. 5, shows α1 with respect to θ, for different combi-

nations of s1, s2 and s3. For specific triplets of s1, s2 and

s3, there are always values of θ that eliminate α1.

Figure 5: α1 with respect to θ for different s1, s2, s3 values.

Second Order Momentum Compaction Factor

The second order momentum compaction factor, α2, can

be expressed through Eq. (5). The first and second term

of the equation depends only on the dipole characteris-

tics, while the third term, η′0η
′

1, depends on the sextupole

strengths. Calculation of the integral of Eq. (5) along the

TME cell, leads to an expression for α2, which depends

on the cell characteristics ρ, θ, s1, s2, s3 and the sextupole

strengths λ1, λ2.

Fig. 6, shows values of λ1 and λ2 for a choice of θ= π
12

and of drift spaces s1=0.8 m, s2=0.6 m and s3=0.8 m. It

is important to highlight than not every pair of λ1 and λ2

give solution to the elimination of α2. For reasons of optics

stability, only sextupole strengths with opposite sign are of

interest. Fig. 7, shows the second order momentum com-

paction factor, α2, with respect to θ for choices of λ1= 100

m−3 and λ2= -75 m−3, according to the results of Fig. 6.

Each color curve corresponds to a different triplet of s1,

s2, s3. Not all triplet combinations can eliminate α2, while

the dipole’s bending angle which eliminates α2, depends

strongly on the choice of the drift spaces lengths. It is im-

portant to notice, that, only certain combinations of λ1 and

λ2 eliminate α2. After tuning the cell parameters in order

to eliminate α0 and α1, the sextupoles’ strengths can be

uniquely defined in order to eliminate α2.
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Figure 6: Values of λ1 and λ2 that eliminate α2.

Figure 7: Plot of α2 with respect to θ, for different s1, s2,

s3.

CONCLUSIONS

In order to preserve the longitudinal beam characteris-

tics, for the best collider performance, the CLIC DR de-

lay ring must function under isochronous conditions. The

elimination of the momentum compaction factor up to high

order is possible with the appropriate adjustment of the

TME cell parameters. Zero order isochronicity condition,

implies negative dispersion at the center of the dipole. For

specific s1, s2, s3, there are always solutions of the dipole’s

bending angle, satisfying the stability criterion in the hori-

zontal and vertical planes, that eliminate the first and sec-

ond order momentum compaction factors. However, the

existence of those solutions does not guarantee the simul-

taneous elimination of the latest. A further numerical study

is in progress for comparing the analytical results with sim-

ulations for high order isochronous cells.
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