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Abstract 
The excitation of wake waves by the electron bunch in 

an isotropic plasma-dielectric waveguide is studied. It is 
shown that the excited field consists of two components: 
the field of the Langmuir wave and the field of 
eigenmodes of a dielectric waveguide. At a certain 
plasma density, the longitudinal component of Langmuir 
wave becomes significantly lower than the longitudinal 
component of the dielectric waves and transverse field 
component of the Langmuir wave is much higher than 
transverse component of the dielectric waves. The periods 
of these two types of waves differ significantly. This 
allows to provide the acceleration of the test bunch by a 
field of the dielectric wave with its simultaneous focusing 
by the plasma wave field. 

INTRODUCTION 

Acceleration of charged particles by wakefields is 
perspective, thriving direction in a high-energy physics. 
One of wakefield acceleration methods excited by 
relativistic electron bunches, as a slowing medium uses 
the plasma [1] created by the same electron bunches [2] 
or an external source. In particular, as an external source 
recently it was proposed to use a capillary discharge [3, 
4]. The capillary tube is a slowing medium, therefore at 
propagation in its channel of a laser impulse or electron 
bunches along with plasma wakefields will be excited an 
eigen waves of dielectric structure modified by presence 
of plasma in the transport channel. Till now influence of 
electrodynamic properties of a material of capillary tubes 
on excitation of plasma wakefields is not investigated. On 
an example of a cylindrical waveguide of terahertz 
operation frequency range, we investigate excitation of 
wakefields by relativistic electron bunches in a dielectric 
waveguide with the accelerating channel filled with 
isotropic plasma. It is shown that the excited field consists 
of two items: Langmuir wave fields (LW) and fields of 
eigen waves of dielectric waveguide (DW). It turns out at 
certain density of plasma a longitudinal component of 
LW it is significantly less than a longitudinal component 
of the DW waves , and transverse components of the LW 
field is significantly higher than transverse component of 
the DW waves. The periods of these two types of waves 
generally do not coincide. By numerical calculations the 
range of density of plasma at which probably to provide 
acceleration of a test bunch with its simultaneous 
focusing by LW is defined.  

ANALYTICAL SOLUTIONS FOR THE 
WAKE FIELDS 

For the investigation of the influence of a dielectric 
medium on the excitation of the plasma wakefields we 
find the wakefield of an electron bunch moving in a 
plasma waveguide with a dielectric ring insert. The 
plasma waveguide is a homogeneous plasma cylinder of 
radius a, surrounded by a perfectly conducting casing of 
radius b. The dielectric insert fills all the space between 
the casing and the plasma. The excitation of the 
waveguide will be considered in the approximation of a 
linear isotropic plasma with density pn . 

Let’s begin from the determination of wake field of the 
bunch, having a shape of an endless thin axisymmetric 
ring radius 0r . The azimuthally symmetric wakefield 

excited by the bunch, it is described by the following 
system of Maxwell's equations: 
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where Er, Ez are radial and longitudinal components of 
electric field, Dr, Dz are radial and longitudinal 
components of electric induction, Hφ is azimuthal 
magnetic field component, current density is equal  
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τ=t-z/v0, t0 is the time when the bunch crosses the plane 
z=0, v0 is its velocity; Q is charge of the bunch, δ is the 
Dirac delta function. Expending the Maxwell's equations 
(1) in Fourier integral and at using the well-known  
boundary conditions at the dielectric surface and at the 
bunch surface we find the expression of Fourier 
component of electromagnetic field. Having performed 
the inverse Fourier transform, we obtain expressions for 
the components of the wakefield excited by the bunch, 
having the form of a thin ring of radius 0r . 

By integrating these expressions over a time of flight t0 
and over a transverse coordinate of the ring particles r0 of 
the bunch, we obtain expressions for the wakefields 
excited by a bunch of a finite longitudinal and a finite 
transverse dimensions. For a solid cylindrical bunch of 
the radius rb and the length of Lb with a homogeneous 
distribution of the particle density 
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The final expressions for the components of the 
wakefield have the form of: 
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(x)  is  the Heaviside step function, 
n n

n n 0 n 0F (x, y) ( 1) J (x)N (y) ( 1) N (x)J (y), n 0,1     ,

0 1J (x),J (y) and 0 1N (x), N (y) are Bessel and Neumann 

functions of zeroth and of first order, respectively, 

0 0v / c  , 2 2
p p(w) (w) 1 w / w     , if r a  and

d(w)    if a r b  ; 2
p pw 4 e n / m   is plasma 

frequency, e and m are charge and mass of electron; d is 

relative permeability of the dielectric insert, which we 
supposed to be independent of frequency; 

n
n n 0 n 0(x, y) I (x)K (y) ( 1) K (x)I (y), n 0,1      

0 1I (x), I (x) and 0 1K (x), K (x)  are modified Bessel and 

MacDonald functions of the zeroth and of the first order, 
respectively, p p 0k w / v , s

p p s(w w )    , 

s
d d s(w w )    , 

s
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where 2
0/ 1 d d d    .  

Dispersion function and the eigen frequencies sw  are 

determined by solving the dispersion equation: 
sD(w ) 0 .            (14) 

WEPPP003 Proceedings of IPAC2012, New Orleans, Louisiana, USA

ISBN 978-3-95450-115-1

2724C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

03 Particle Sources and Alternative Acceleration Techniques

A15 New Acceleration Techniques



THE NUMERICAL CALCULATIONS 
Below we present the results of numerical calculations 

of wake field. For numerical calculations we choose the 
dielectric waveguide with transverse dimensions a 0.2
mm, b 0.5 mm, permeability d 3.75  (quartz), the 

energy of the electron bunch is equal to 5 GeV (the speed 
10

0v 2.998 10  cm / sec), Q 3  nC bunch charge, the 

radius of the bunch, br 0.1 mm, bL 0.2 mm bunch 

length. 
The figures 1 and 2 show the results of calculations for 

the plasma density 14
pn 10 cm-3 (the frequency of 

plasma wave 11
pw 5,64 10  rad / sec, the wavelength is

p 0 p2 v / w 0.334    cm). Fig. 1 shows the axial 

distribution of the longitudinal and transverse forces 
acting on a test particle located at a distance of 0.01 cm 
from the axis of the waveguide. From comparison of 
these dependences, it follows that by placing a test bunch 
at some distance from the head of the drive bunch it is 
possible to provide an acceleration of charged particles 
and their simultaneous radial focusing. 

Figure 1: Axial profile of the longitudinal (solid line) and 
transverse forces (dotted line), acting on a test particle 
located at a distance of 0.01 cm from the axis of the 
waveguide. Here 0v t z   , the head of the drive bunch 

is at 0  . 

 
As can be seen from the figure 1, the radial force has 

nearly harmonic dependence on the longitudinal 
coordinate with a period equal to ~ 0.33 cm, i.e. 
Langmuir wave makes the dominant contribution to the 
radial force. At the same time, its contribution to the 
longitudinal force, accelerating test particles are 
predominantly small. Longitudinal force is mainly 
determined by the eigen modes of a dielectric waveguide, 
its complex dependence on the longitudinal coordinate 

associated with the excitation of several radial modes of a 
dielectric waveguide. 

 

Figure 2: Transverse profile of the longitudinal (dotted 
line) and transverse forces (solid line), acting on a test 
particle, located at a distance of 0.01 сm from the head of 
the leading bunch. 

 

Fig. 2 shows the radial dependence of the longitudinal 
and lateral forces acting on a test particle located at the 
first maxima of the accelerating field at a distance of 0.1 
mm behind the head of the drive bunch. Longitudinal 
force slightly varies in the cross section of the transport 
channel, and the radial force is focusing on the entire 
cross section of the channel. 

CONCLUSIONS 
At studying the excitation of wake fields by an electron 

bunch in a plasma-dielectric waveguide we found that the 
filling of the vacuum transport channel dielectric 
waveguide by an isotropic plasma of a certain density 
leads to a focusing wake field acting on the accelerated 
bunch. Optimization of the focusing mechanism of a test 
bunch over plasma density and over other parameters of 
the dielectric waveguide will be conducted in further 
studies. 
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