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Abstract

In a heavy-ion synchrotron the bunched particle beams
can perform longitudinal oscillations of several modes.
These oscillations are damped by Landau damping, but can
become unstable if driven accordingly. Furthermore, Lan-
dau damping is accompanied by filamentation which in-
creases the longitudinal beam emittance and thus reduces
the beam quality. To stabilize the beam and to keep the
emittance low, control measures are taken. However, any
controller design requires knowledge about the oscillation
frequency of the mode which is to be damped. For a single
harmonic RF voltage and a very small bunch, the longitu-
dinal equations of motion of the particle can be linearized,
and all the particles oscillate with approximately the same
synchrotron frequency which equals the frequency of the
dipole oscillation. For a larger bunch, or for a double
harmonic RF system introducing nonlinearities around the
reference point, this is no longer valid. In this work, we
present a method to obtain the frequency of the dipole os-
cillation for larger bunches with a single or double har-
monic RF system and show how this can be used for a state
space controller design.

SINGLE AND DOUBLE HARMONIC RF
VOLTAGE

In this paper a single and a double harmonic RF system

Vsh(τ) = V̂1 sin(ωRF τ) , (1a)

Vdh(τ) = V̂1 sin(ωRF τ) + V̂2 sin(2ωRF τ +Δϕdh)
(1b)

are considered, where V̂2 and Δϕdh are chosen in such a
way that a saddle point in τR [7] occurs, where τ denotes
the arrival time with respect to the zero crossing of the sin-
gle harmonic sinusoidal component of the RF voltage. For
the sake of simplicity only the stationary case below tran-
sition energy with ϕR = ωRF τR = 0 is considered. Fig. 1
shows the different RF voltages.

Furthermore only low beam intensities are considered
and therefore space charge effects introducing a syn-
chrotron frequency tune shift [6] are neglected.
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Figure 1: single and double harmonic gap voltage with
identical first cavity voltage amplitude V̂1

STATE OF THE ART
Using the phase space variablesϕ = ωRF τ and ΔE

ωR
with

ΔE = E − ER, the longitudinal equations of motion for
a single particle can be linearized for V (ϕ) = Vsh(ϕ) and
short bunches [3]. In this case the barycenter of the bunch
oscillates with the frequency

fsyn,0 = fR

√
hqV̂1|ηR cosϕR|

2πβ2
RER

(2)

with the harmonic number h, the phase slip factor ηR =
1

γ2

tr

− 1
γ2

R

, the angular revolution frequency ωR, the speed

β normalized to the speed of light, the total energy ER and
the charge q of the particles.

In case of a realistic bunch length this linearization is no
longer valid. As a result, the synchrotron frequency spread
of the particles has to be taken into account and the rigid
dipole mode does not oscillate with the linear synchrotron
frequency, but with a smaller frequency (“coherent syn-
chrotron frequency”). For small displacements ϕB � π of
the bunch barycenter a way to estimate the coherent syn-
chrotron frequency is given e.g. in [1]:

Ωsyn,coh = ωsyn,0

√
1

|um|
∫ ϕm2

ϕm1

(
V (ϕ)

V̂1

)2

dϕ

with um =
∫ ϕm2

ϕm1

(Y (ϕ) − Y (ϕm2)) dϕ; Y (ϕ) =
1
V̂1

∫ ϕ

0
V (ϕ) dϕ; ϕm1,2: left/right end of the bunch. How-

ever, it is not specified how the end of the bunch is to be
determined.

Another common way to obtain the synchrotron fre-
quency for a larger bunch is the measurement of the beam
transfer function [5]. However, these measurements are
rather intricate and the obtained values are only valid for
the very bunch size and ion type used in the experiment.
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SINGLE HARMONIC OPERATION

Coherent Synchrotron Frequency for Large
Bunches

In the following, the standard deviation of the bunch in
direction of ϕ will be denoted by σϕ. For different par-
ticle densities, the bunch length will be defined as 4σϕ.
As the bucket length equals 2π, feasible values will be
σϕ ∈ [0; π/2].

The nonlinear sinusoidal voltage leads to lower syn-
chrotron frequencies of particles with a larger phase devia-
tion ϕwhich decreases the coherent synchrotron frequency.
According to [3] the oscillation period of a particle with a
maximum phase coordinate ϕ∗ can be written as

fsyn(ϕ
∗) = fsyn,0

π

2K (sin(ϕ∗/2))
,

where K(k) denotes the complete elliptic integral of the
first kind. The oscillation frequency of the barycenter of
the bunch can be calculated for different particle densities
with a moment method that was developed in [4]. For a
Gaussian density and the assumption that the bunch shape
is approximately ellipsoidal, the frequency for small dipole
amplitudes is derived as

fsyn,coh,g(σϕ) = fsyn,0

√√√√1 +
7∑

n=1

(−1)n
n! 2n

σ2n
ϕ

and for an ellipsoidal bunch with a uniform density as

fsyn,coh,u(σϕ) = fsyn,0

√√√√1 +

7∑
n=1

(−1)n
n! (n+ 1)!

σ2n
ϕ .

Fig. 2 compares the two coherent frequencies with the syn-
chrotron frequency for the trajectory ϕ∗ = 2σϕ. It is ap-
parent that as a rule of thumb, the synchrotron frequency
at 2σϕ is a good estimate for the coherent frequency of the
barycenter, i. e.

fsyn(ϕ
∗ = 2σϕ) ≈ fsyn,coh,u(σϕ) ≈ fsyn,coh,g(σϕ) .
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Figure 2: coherent frequency of the barycenter for a single-
harmonic setup compared to the synchrotron frequency.

Fig. 3 shows the relative error of this estimate. For a
bunch to bucket length ratio of up to 2σϕ/π = 0.7, the

error of this rule is less than 5% for both Gaussian and uni-
form distributions. For a uniform distribution 2σϕ equals
the maximum phase deviation of the border of the bunch.
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Figure 3: relative error if the coherent frequency is es-
timated with the synchrotron frequency for the trajectory
ϕ∗ = 2σϕ

DOUBLE HARMONIC OPERATION
For obvious reasons the equations of motion can not be

linearized if a double harmonic voltage is applied. As a
first approach to obtain the coherent synchrotron frequency
also the 2σϕ-trajectory can be considered. The synchrotron
frequency of a particle moving along a certain trajectory
can be derived as

fsyn(ϕ
∗) = fsyn,0

π sin ϕ∗

2√
2K

(√
1
2

(
1 + sin2 ϕ∗

2

)) (3)

as shown e.g. in [3]. Macro particle simulations show that
the synchrotron frequency of the 2σϕ-trajectory is a good
first estimate of the coherent synchrotron frequency but can
still be improved. This can be seen in Fig. 5 which shows
the percental error Δfsyn,coh =

fsyn,coh,sim−fsyn(2σϕ)
fsyn,coh,sim

of
this approach along with an improved estimate which is
presented below. In the simulation a matched bunch (σϕ =
0.28π) was shifted by ϕB(t = 0) = 0.07π.

To obtain a better estimate for the coherent synchrotron
frequency at first macro particle simulations are performed
for several bunch sizes σϕ and barycenter deviations
ϕB(t = 0). The simulated coherent synchrotron frequen-
cies are compared to the synchrotron frequencies along the
trajectories in phase space, and for each simulation the tra-
jectory is determined whose synchrotron frequency equals
the coherent synchrotron frequency. This yields a value of
ϕ∗

opt for each bunch size σϕ and phase deviationϕB which,
inserted in Eq. (3), results in the coherent synchrotron fre-
quency. The simulated values of ϕ∗

opt for 40Argon18+ ions
with a kinetic energy of Ekin = 11.4Mev

u are shown in
Fig. 4.

By introducing a smoothing function, ϕ∗

opt can be ex-
pressed in terms of σϕ:

ϕ∗

opt ≈ −0.4287
σ2
ϕ

π
+ 2.1898σϕ . (4)

This improves the percental error of the estimate signifi-
cantly, as can be seen in Fig. 5. Similar results are obtained
for different ion types and beam energies.
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Figure 4: simulated values of ϕ∗

opt for different bunch sizes
σϕ and barycenter deviationsϕB . *1: For unrealistic small
bunches with a large barycenter deviation, ϕ∗ depends on
ϕB . *2: For realistic bunch sizes ϕ∗ depends only on σϕ
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Figure 5: percental deviation of synchrotron frequency of
the ϕ∗ = 2σϕ-trajectory and ϕ∗

opt according to smoothing
function Eq. (4).

CONTROLLER DESIGN
To damp the dipole oscillation a state space controller is

designed based on the model of a harmonic oscillator with
the coherent synchrotron frequency. The two variables are
the bunch barycenter phase ϕB and the energy deviation
ΔEB . The actuating variable is the phase shift ϕgap of the
accelerating voltage e.g. for a double harmonic system

Vdh(ϕ) = V̂1 sin(ϕ− ϕgap)

+ V̂2 sin(2ϕ− 2ϕgap +Δϕdh) . (5)

In the SIS 18 at GSI the beam current is measured from
which ϕB − ϕgap is obtained [2]. The cavities are syn-
chronized to direct digital synthesis (DDS) modules, which
means that in order to calculate ϕB a second DDS has to
be run to obtain the phase shift ϕgap of the RF voltage.
As the energy deviation ΔEB can not be measured, an ob-
server is needed. The controller performance is improved if
ϕB −ϕgap is fed back which smoothens the progression of
the bunch barycenter. An additional integrator is added as
a countermeasure to a remaining offset. The closed control
loop is shown in Fig. 6.
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Figure 6: closed control loop: bunch barycenter
(ϕB , ΔEB)

T , control effort of state space controller
ussp = −kT · (ϕB − ϕgap, ΔEB)

T

The controller is optimized for robustness against para-
meter uncertainties and keeps the beam emittance to a mini-
mum, as shown in Fig. 7. The simulation parameters were
σϕ = 0.28π, ϕR = 0, double harmonic RF system with
V̂1 = 16000V, 40Argon18+ ions with a kinetic energy of
Ekin = 11.4MeV

u , ϕB(t = 0) = 0.1π.
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Figure 7: phase deviation of bunch barycenter and beam
emittance growth in the open loop and in the closed loop
case.
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