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Abstract 
Two-dimensional (2D) particle-in-cell (PIC) 

simulations are performed to verify earlier theoretical 
predictions of adiabatic thermal beams in a periodic 
solenoidal magnetic focusing field. In particular, results 
are obtained for adiabatic thermal beams that do not rotate 
in the Larmor frame. For such beams, the theoretical 
predictions of the rms beam envelope, the conservations 
of rms thermal emittances, the adiabatic equation of state, 
and the Debye length are verified in the PIC simulations. 

INTRODUCTION  
Adiabatic thermal beam equilibrium was discovered 

recently in a periodic solenoidal magnetic focusing field 
[1-3]. In particular, the existence of the adiabatic thermal 
beam equilibrium was shown in the frameworks of kinetic 
theory and equivalent warm-fluid theory.   

In the warm-fluid theory of the adiabatic thermal beam 
equilibrium [1,2], warm-fluid equations were solved in 
the paraxial approximation. The equation of state was 
adiabatic. The rms beam envelope, the density and flow 
velocity profiles, and the self-consistent Poisson equation 
were derived.  

In the kinetic theory of the adiabatic thermal beam 
equilibrium [3], the thermal beam distribution function 
was constructed using the approximate and exact 
invariants of motion, i.e., a scaled transverse Hamiltonian 
and the angular momentum. By taking statistical averages, 
all of the equations in the warm-fluid theory were 
recovered, including the adiabatic equation of state, the 
rms beam envelope, the density and flow velocity profiles, 
and the self-consistent Poisson equation. 

Effects of the beam perveance, emittance and rotation 
on the beam envelope and density distribution were 
examined. Good agreement was found [3] between theory 
and a recent high-intensity beam experiment performed at 
the University of Maryland Electron Ring (UMER) [4]. 

The phase space for charged-particle motion in the 
adiabatic thermal beam equilibrium was analyzed [5] and 
compared with that of the KV-type beam equilibrium [6-
8]. It was found that the widths of nonlinear resonances in 
the adiabatic thermal beam equilibrium are narrower than 
those in the KV-type beam equilibrium. Numerical 
evidence is presented, indicating the almost complete 
absence of chaotic particle motion in the adiabatic thermal 
beam equilibrium. 

The discovery of the adiabatic thermal beam 
equilibrium was an important advance in beam physics, 

overcoming the shortcoming of the Kapchinskij- 
Vladmirskij (KV) type equilibrium in a periodic 
solenoidal magnetic focusing field [6-8]. The KV type 
equilibrium has a singular ( function) distribution in 
the four-dimensional phase space. Such a function 
distribution gives a uniform density profile across the 
beam in the transverse directions, and a transverse 
temperature profile which peaks on axis and decreases 
quadratically to zero on the edge of the beam. Because of 
the singularity in the distribution functions, these beam 
equilibria are not likely to occur in real physical systems 
and cannot provide realistic models for theoretical and 
experimental studies and simulations except in the zero-
temperature limit. For example, the KV equilibrium 
model cannot be used to explain the beam tails in the 
radial distributions observed in the recent high-intensity 
beam experiment [4]. In contrast, the measured density 
distribution matches that of the adiabatic thermal beam 
equilibrium [3,4].  

In this paper, results of two-dimensional (2D) particle-
in-cell (PIC) simulations are presented, which further 
validate the theoretical predictions of the adiabatic 
thermal beam equilibrium. In particular, results are 
obtained for adiabatic thermal beams that do not rotate in 
the Larmor frame. For such beams, the theoretical 
predictions of the rms beam envelope, the conservations 
of rms thermal emittances, the adiabatic equation of state, 
and the Debye length are verified in the simulations. 

PARTICLE-IN-CELL MODEL  
We study charged-particle dynamics in the adiabatic 

thermal equilibrium of an intense charged-particle beam 
propagating with constant axial velocity zbcê  in the 
periodic solenoidal magnetic focusing field  
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where zs  is the axial coordinate, sBSsB zz  is 
the axial magnetic field, S  is the fundamental periodicity 
length of the focusing field, and c  is the speed of light in 
vacuum.  

The paraxial approximation is made under the 
following assumptions : 1) Srbrms , where brmsr  is the 

rms beam radius, and 2) 1/ 23
bb , where 

22 / mcNq b  is the Budker parameter of the beam,  q  
and m  are the particle charge and rest mass, respectively, 

rdrsrnN bb 2,
0

= const is the number of charged 

particles per unit axial length, and 2/12 )1( bb  is the 
relativistic mass factor.  
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The basic equations in the 2D PIC model are expressed 
in cgs units as [3] 
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where PNi ,,2,1 , 22)()( cmsqBs bbzz ,  is 
the electrostatic potential, bn  is the beam density, and 

ix~  is the transverse position of the i th macroparticle in 
the Larmor frame, i.e., sincos~ yxx  and 

cossin~ yxy  with 
s

z dss
0

)( .  

In the 2D PIC simulations, the focusing field is chosen 
to be sinusoidal with sS z Ss /2cos10 , 
where 0  is the vacuum phase advance. Poisson’s 
equation (3) is solved using a successive over relaxation 
(SOR) algorithm in a grounded circular perfect 
conducting pipe of radius R  centered on the z -axis on a 
square mesh. The value of R  is chosen to be several 
times that the maximum value of the rms beam radius.  

The 2D PIC simulations discussed in this paper are 
limited to a class of adiabatic thermal beams that do not 
rotate in the Larmor frame. For such a class of beams, the 
macroparticles are loaded at 0s  according to the initial 
distribution function  
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where 
2/122 ~~~ yxr , prime denotes derivative with 

respect to s , Bk  is the Boltzmann constant, and 0T  
and 0,~rnb  are the initial beam temperature and density, 
respectively. The density 0,~rnb  is given by 
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  (5) 
where C  is a constant determined by 

rdrsrnN bb
~~2,~

0
, 2232 /2 cmNqK bbb  is the 

generalized beam perveance, the initial electrostatic 
potential )0,~(r  is determined from the Poisson equation 
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and )0(brmsr  and 0)0(brmsr  are the initial conditions of 
the periodic rms beam envelope )()( Ssrsr brmsbrms  
that solves the rms beam envelope equation  
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The trajectories of the macroparticles are integrated using 
the standard leapfrog method.  

The 2D PIC algorithm is implemented in a Matlab 
version of the MIT 2D Periodically Focused Beam 
(PFB2D) code which was used extensively in simulation 
studies of high-brightness charged-particle beams in 
periodic focusing fields [9]. The trajectories of the 
macroparticles are integrated using the standard leapfrog 
method.  

RESULTS  
Two-dimensional PIC simulations are performed to 

verify the theoretical predictions on the following:  
a) rms beam envelope;  
b) conservations of rms thermal emittances; 
c) adiabatic equation of state; 
d) density, velocity, and temperature profiles; and 
e) Debye length. 

Results of a typical PFB2D simulation are shown in Figs. 
1-5 for the parameters: 800 , 0.74/ thSK , 

6101PN , 0.54/ 2/1 RS th , integration step size 

01.0/ Ss , and mesh size 02.0~4/ 2/1 xS th .  

The focusing parameter 22
0

2 /2cos1 SssS z   
is plotted in Fig. 1 as a function of the normalized 
distance Ss / . The normalized rms beam radius 

brmsth rS 2/14/  from the PFB2D simulation is plotted in 
Fig. 2 as a function of the normalized distance Ss / . 
Within the statistical error of %1 , the result agrees with 
the matched beam envelope solution of Eq. (7).  

                     

Figure 1: Plot of the normalized focusing parameter 
sS z

2  versus the normalized distance Ss / .  

                     

Figure 2: Plot of the normalized rms beam radius 

brmsth rS 2/14/  versus the normalized distance Ss / . 
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Figure 3: Plots of (a) probability density distributions 

x~  versus xS th
~4/ 2/1  and (b) probability density 

distributions y~  versus yS th
~4/ 2/1  at 20/ Ss . 

The dotted curves are from the PFB2D simulation, 
whereas the dashed curves are from the theoretical 
predictions [1-3]. 

                    

Figure 4: Plot of the normalized beam density 
bbth nNS /4  versus the normalized radius 

rS th
2/14/  at 20/ Ss . 

                    

Figure 5: Plots of the relative rms thermal emittances 
0/ ~~ rmsxrmsx  and 0/ ~~ rmsyrmsy   versus the 

normalized distance Ss / . 

The transverse momentum distribution remains to be 
Gaussian, as illustrated in Fig. 3. It is evident that there is 
good agreement between the simulation and theory.  

The beam density distribution maintains a plateau 
distribution as shown in Fig. 4 in which the normalized 
beam density bbth nNS /4  is plotted as a function of the 

normalized radius rS th
2/14/  at 20/ Ss . The dotted 

curves are from the PFB2D simulation, whereas the 
dashed curves are from the theoretical predictions. The 
characteristic scale over which the beam density falls is 
the Debye length D   [1-3], which, in this example, has a 

normalized value of 14.04/ 2/1
DthS . There is good 

agreement between the simulation and theory. 
In Fig. 5, the evolutions of the relative rms thermal 

emittances 0/ ~~ rmsxrmsx  and 0/ ~~ rmsyrmsy  in the 
PFB2D simulation are shown in solid and dashed curves, 
respectively, as a function of Ss / . Here, 0~rmsx  and 

0~rmsy  are the rms thermal emittances in the x~ - and 

y~ -directions at 0s , respectively. Both rms emittances 
are conserved within the statistical error of %3.0 . These 
results are in agreement with the theoretical predictions of 
the conservations of rms thermal emittances and adiabatic 
equation of state.   

CONCLUSION 
Two-dimensional particle-in-cell simulations were 

performed to verify the theoretical predictions of adiabatic 
thermal beams in a periodic solenoidal magnetic focusing 
field. Results were obtained for adiabatic thermal beams 
that do not rotate in the Larmor frame. For such beams, 
the theoretical predictions of the rms beam envelope, the 
conservations of rms thermal emittances, the adiabatic 
equation of state, and the Debye length were verified in 
the 2D PIC simulations. 
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