Proceedings of IPAC2012, New Orleans, Louisiana, USA WEPPRO039

NONLINEAR LATTICE FOR SPACE-CHARGE DOMINATED BEAM
TRANSPORT WITH SUPPRESSED EMITTANCE GROWTH"

Yuri Batygin' and Alexander Scheinker*, LANL, Los Alamos, NM 87545, USA

Abstract

We present a feasible design for the implementation of
a beam emittance growth suppressing lattice for space-
charge dominated beams. It is based on a FODO fo-
cusing channel with quadrupole and duodecapole compo-
nents which on average create the field required to match
the high-brightness beam with the structure. Matched
beam exhibits smaller emittance growth than that in regular
quadrupole focusing channel. Numerical results demon-
strate the ability of the proposed lattice to prevent halo for-
mation of a nonuniform space-charge dominated beam.

BACKGROUND ON MATCHING OF A
NONUNIFORM SPACE-CHARGE
DOMINATED BEAM

Nonuniform space-charge dominated beams cannot be
perfectly matched with a linear focusing channel resulting
in emittance growth and halo formation, as shown in Figure
1. Ref. [1] deals with the transport of an intense, nonuni-
form beam with suppressed halo formation. In this work
we present a practical structure for the implementation of
the stabilizing fields for beam transport with reduced emit-
tance growth.

Self-consistent space charge beam potential

The analysis in [1] starts with the simplified single-
particle Hamiltonian in a focusing channel:
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where Uext (2, y) is the scalar potential of the focusing field
and Up(z,y) is the space charge potential of the beam.
Next, in order to find a self-consistent particle distribution
the following variables are introduced:
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where a is the radius of the channel, R is the beam radius,
and € is 4 xrms normalized beam emittance. The unknown
potential V} is then expressed as a Fourier-Bessel series,
which satisfies the Dirichlet boundary condition at the con-
ductive surface of a round pipe Vj(a) = V5. The constant
Vo is defined such that the total potential of the structure
vanishes at the axis: Vot (0, ) + W + Y — 0. After
making several approximations the analysis in [1] arrives
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Figure 1: Emittance growth and halo formation of the
50 keV, 20 mA, 0.05 7 cm mrad proton beam in FODO
quadrupole channel with the period of L = 15 cm, lens
length of D =5 cm and field gradient of G5 = 0.04278%.
Numbers indicate FODO periods.

at the simplified approximate form of Poisson’s equation:
Vo + (14 6)Vy = 21 — Viyy), where § = ﬁ < 1,
b = %5%%2 is the dimensionless beam brightness, I, =
dregme’ /q is the characteristic value of beam current, and
k ~ 1 is the coefficient depending on beam distribution.
The self-consistent space-charge dominated beam potential

V,, and electric field E} near axis are then

~2 . 2
Vo = —mvcxt, Ey, = _mEcxtv 3
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Figure 2: Lines 0f equal values of the function C' = 1 r2 +

(r8 cos(4y) + &1t for ¢ = —0.03: (a) C = 0. 05 (b)
0—0.25,(c)c—05 and (d) C' = 0.82.

which imply that a space-charge dominated beam compen-
sates for the focusing field in the beam core regardless
of the applied external focusing potential, a phenomenon
known as Debye shielding for nonneutral plasmas. The
space-charge distribution required for matching is then
derived from Poisson’s equation as p, = —egAU, =
Y Aljcxt

1+5

Matching channel for space-charge dominated
beam

In [1], a uniform four vane structure with field
E = [7;; (Gar cos(2¢) + Ger® cos(6p))
—|—Zp (Garsin(2p) + Ggr® sin(&p))} sin(wot),(4)

is considered, where G2 is a quadrupole gradient, Gg is
a duodecapole component, and wy = 27c¢/\ is an oper-
ational frequency. This structure can be described by the
effective potential

me? pd 1, 6 ¢ 10
Uext(r, ) = PRBY 5" + (r° cos(4p) + 5" }7
)

where (g = \?gfk is a smooth transverse oscillation fre-
quency [2] and { = gg is the ratio of field components.
Contour plots of Eq. (5) are shown in Figure 2. By ap-
plying Eq.(5), an expression is found for a self consistent
space-charge distribution of the beam in the structure and
thereby the required values of the focusing gradients Go
and G are found to be:

Q= V8rmc? 31
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FODO CHANNEL WITH

QUADRUPOLE-DUODECAPOLE FIELD

The focusing electric field, Eq. (4), can be realized by
a uniform four-vane structure with specific pole-tip shape
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Figure 3: FODO quadrupole-duodecapole channel with
combined lenses with the period of L = 15 cm, lens length
of D =5 cm, and adiabatic decline of duodecapole com-
ponent to zero over a distance of 7 periods.

imposing duodecapole component in pure quadrupole. The
construction of such a structure is mechanically compli-
cated and expensive. We present a simpler and more
practical structure, as shown in Figure 3. We consider a
FODO lattice of lenses with combined quadrupole Ga(2)
and duodecapole Gg(z) field components. Such magnets
can be done as a combination of conventional quadrupoles
with current sheet magnets [3]. The quadrupole field is
kept constant along the structure while duodecapole com-
ponent gradually decreases from nominal value to zero at
a certain distance. It gives us the possibility to match ini-
tially non-unifom beam with the non-linear focusing chan-
nel and adiabatically transform it to the beam matched with
quadrupole focusing structure. Magnetic field along the
structure is represented by:

—

B = [ZT (Garsin(2¢) + Ger® sin(6¢))

+ i, (Gar cos(2¢p) + Ggr® cos(6gp))} G(z),

where G(z) is the longitudinal field dependence expanded
in Fourier series:

G =2 > (‘1{21 sm<”’zD>Sm(2”’L’“),

n=1
k=2n—1

Q)
where D is the length of the lens and L is the period of the
structure. According to the averaging method [4], particle
trajectory in the fast oscillation field

F= if(ﬁt ), Z (7) sin(wgt)  (B)

k=1

can be approximated by a Hamiltonian of averaged particle
motion:

1 ¢ = F%(R)
H = - R? ko, 9
gt 4(my)? 1«2::1 w? ©)
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Figure 4: Adiabatic matching to avoid halo formation
of the 50 keV, 20 mA, 0.05 7 cm mrad proton beam
in FODO quadrupole-duodecapole channel with combined
lenses with the period of L = 15 cm, lens length of D =
5 cm, quadrupole field gradient of Gy = 0.04278% and
adiabatic decline of duodecapole component from Gg =
—0.21 x 1073 to zero for the distance of 7 periods.
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Numbers indicate FODO periods.

Amplitude and frequency of field harmonics in Eq. (9) are
determined by B and Eq. (7):

4 5 sin2 w(2k—1)D
e = () B?<r,w>W,

42 ((Qk me)?'
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Figure 5: Emittance growth in FODO quadrupole channel
shown in blue, and in the quadrupole-duodecapole channel
shown in red.

Calculation of potential part of Hamiltonian, Eq. (9), gives
for effective potential of the structure:

2, 5 )
Uest (r,0) = p1g (ﬁ;) <T2 + ¢r® cos(4yp) + C2r10> ,
(10)

where 11 is the phase advance of transverse oscillations per
period of FODO channel [2]:

L[ DD
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Ho (11)
Potential, Eq. (10), is similar to that derived earlier for the
4-rod structure, Eq. (5), with different value of transverse
betatron tune /.

Figures 1, 4, and 5 contain results of BEAMPATH simu-
lations of 50 keV, 20 mA, 0.05 7 cm mrad proton beam in

the focusing structure presented in Fig. 3. Injected beam

o4y® piﬂ)f,)
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we truncated along equipotential lines of effective poten-
tial (see Fig. 2), to make the beam distribution close to the
matched beam. Adiabatic change of duodecapole compo-
nent along the structure results in gradual transformation
of an initially non-uniform beam distribution into distri-
bution matched with quadrupole channel with suppressed
emittane growth and halo formation.
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