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Abstract
We present a feasible design for the implementation of

a beam emittance growth suppressing lattice for space-

charge dominated beams. It is based on a FODO fo-

cusing channel with quadrupole and duodecapole compo-

nents which on average create the field required to match

the high-brightness beam with the structure. Matched

beam exhibits smaller emittance growth than that in regular

quadrupole focusing channel. Numerical results demon-

strate the ability of the proposed lattice to prevent halo for-

mation of a nonuniform space-charge dominated beam.

BACKGROUND ON MATCHING OF A
NONUNIFORM SPACE-CHARGE

DOMINATED BEAM
Nonuniform space-charge dominated beams cannot be

perfectly matched with a linear focusing channel resulting

in emittance growth and halo formation, as shown in Figure

1. Ref. [1] deals with the transport of an intense, nonuni-

form beam with suppressed halo formation. In this work

we present a practical structure for the implementation of

the stabilizing fields for beam transport with reduced emit-

tance growth.

Self-consistent space charge beam potential
The analysis in [1] starts with the simplified single-

particle Hamiltonian in a focusing channel:

H =
p2x + p2y
2mγ

+ qUext + q
Ub

γ2
, (1)

where Uext(x, y) is the scalar potential of the focusing field

and Ub(x, y) is the space charge potential of the beam.

Next, in order to find a self-consistent particle distribution

the following variables are introduced:

Vext =
qUext

H0
, Vb =

qUb

H0
, ξ =

r

a
,H0 =

mc2

4γ

( ε

R

)2

, (2)

where a is the radius of the channel, R is the beam radius,

and ε is 4×rms normalized beam emittance. The unknown

potential Vb is then expressed as a Fourier-Bessel series,

which satisfies the Dirichlet boundary condition at the con-

ductive surface of a round pipe Vb(a) = V0. The constant

V0 is defined such that the total potential of the structure

vanishes at the axis: Vext(0, ϕ) +
V̄b(0,ϕ)

γ2 + V0

γ2 = 0. After

making several approximations the analysis in [1] arrives
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Figure 1: Emittance growth and halo formation of the

50 keV, 20 mA, 0.05 π cm mrad proton beam in FODO

quadrupole channel with the period of L = 15 cm, lens

length of D = 5 cm and field gradient of G2 = 0.04278 T
cm .

Numbers indicate FODO periods.

at the simplified approximate form of Poisson’s equation:

V0 + (1 + δ)V̄b = γ2(1 − Vext), where δ = 1
bk � 1,

b = 2
βγ

I
ε2

R2

Ic
is the dimensionless beam brightness, Ic =

4πε0mc3/q is the characteristic value of beam current, and

k ≈ 1 is the coefficient depending on beam distribution.

The self-consistent space-charge dominated beam potential

Vb and electric field �Eb near axis are then

Vb = − γ2

1 + δ
Vext, �Eb = − γ2

1 + δ
�Eext, (3)
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Figure 2: Lines of equal values of the function C = 1
2r

2 +

ζr6 cos(4ϕ) + ζ2

2 r10 for ζ = −0.03: (a) C = 0.05, (b)

C = 0.25, (c) C = 0.5, and (d) C = 0.82.

which imply that a space-charge dominated beam compen-

sates for the focusing field in the beam core regardless

of the applied external focusing potential, a phenomenon

known as Debye shielding for nonneutral plasmas. The

space-charge distribution required for matching is then

derived from Poisson’s equation as ρb = −ε0ΔUb =
ε0
1+δγ

2ΔUext.

Matching channel for space-charge dominated
beam

In [1], a uniform four vane structure with field

�E =
[
−�ir

(
G2r cos(2ϕ) +G6r

5 cos(6ϕ)
)

+�iϕ
(
G2r sin(2ϕ) +G6r

5 sin(6ϕ)
)]

sin(ω0t),(4)

is considered, where G2 is a quadrupole gradient, G6 is

a duodecapole component, and ω0 = 2πc/λ is an oper-

ational frequency. This structure can be described by the

effective potential

Uext(r, ϕ) =
mc2

q

μ2
0

λ2

[
1

2
r2 + ζr6 cos(4ϕ) +

ζ2

2
r10

]
,

(5)

where μ0 = qG2λ
2

√
8πmc2

is a smooth transverse oscillation fre-

quency [2] and ζ = G6

G2
is the ratio of field components.

Contour plots of Eq. (5) are shown in Figure 2. By ap-

plying Eq.(5), an expression is found for a self consistent

space-charge distribution of the beam in the structure and

thereby the required values of the focusing gradients G2

and G6 are found to be:

G2 =

√
8πmc2

qλR

√
ε2

R2
+

3I

Icβγ
,

G6 = − G2

12βγR4

I

Ic

(
ε2

R2
+

3I

Icβγ

)−1

. (6)

FODO CHANNEL WITH
QUADRUPOLE-DUODECAPOLE FIELD
The focusing electric field, Eq. (4), can be realized by

a uniform four-vane structure with specific pole-tip shape
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Figure 3: FODO quadrupole-duodecapole channel with

combined lenses with the period of L = 15 cm, lens length

of D = 5 cm, and adiabatic decline of duodecapole com-

ponent to zero over a distance of 7 periods.

imposing duodecapole component in pure quadrupole. The

construction of such a structure is mechanically compli-

cated and expensive. We present a simpler and more

practical structure, as shown in Figure 3. We consider a

FODO lattice of lenses with combined quadrupole G2(z)
and duodecapole G6(z) field components. Such magnets

can be done as a combination of conventional quadrupoles

with current sheet magnets [3]. The quadrupole field is

kept constant along the structure while duodecapole com-

ponent gradually decreases from nominal value to zero at

a certain distance. It gives us the possibility to match ini-

tially non-unifom beam with the non-linear focusing chan-

nel and adiabatically transform it to the beam matched with

quadrupole focusing structure. Magnetic field along the

structure is represented by:

�B =
[
�ir

(
G2r sin(2ϕ) +G6r

5 sin(6ϕ)
)

+�iϕ
(
G2r cos(2ϕ) +G6r

5 cos(6ϕ)
)]

G(z),

where G(z) is the longitudinal field dependence expanded

in Fourier series:

G(z) =
4

π

∞∑
n=1

k=2n−1

(−1) k−1
2

k
sin

(
πkD

L

)
sin

(
2πkz

L

)
,

(7)

where D is the length of the lens and L is the period of the

structure. According to the averaging method [4], particle

trajectory in the fast oscillation field

�̈r =
q

mγ
�F (�r, t), �F (�r, t) =

∞∑
k=1

�Fk(�r) sin(ωkt) (8)

can be approximated by a Hamiltonian of averaged particle

motion:

H =
1

2
�̇R2 +

q2

4(mγ)2

∞∑
k=1

�F 2
k (

�R)

ω2
k

. (9)
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Figure 4: Adiabatic matching to avoid halo formation

of the 50 keV, 20 mA, 0.05 π cm mrad proton beam

in FODO quadrupole-duodecapole channel with combined

lenses with the period of L = 15 cm, lens length of D =
5 cm, quadrupole field gradient of G2 = 0.04278 T

cm and

adiabatic decline of duodecapole component from G6 =
−0.21 × 10−3 T

cm5 to zero for the distance of 7 periods.

Numbers indicate FODO periods.

Amplitude and frequency of field harmonics in Eq. (9) are

determined by �B and Eq. (7):

F 2
k (r, ϕ) =

(
4βc

π

)2

B2(r, ϕ)
sin2

(
π(2k−1)D

L

)
(2k − 1)2

,

ω2
k = 4π2

(
(2k − 1)βc

L

)2

.

Figure 5: Emittance growth in FODO quadrupole channel

shown in blue, and in the quadrupole-duodecapole channel

shown in red.

Calculation of potential part of Hamiltonian, Eq. (9), gives

for effective potential of the structure:

Ueff(r, ϕ) = μ2
0

(
βc

L

)2 (
r2

2
+ ζr6 cos(4ϕ) +

ζ2

2
r10

)
,

(10)

where μ0 is the phase advance of transverse oscillations per

period of FODO channel [2]:

μ0 =
L

2D

√
1− 4

3

D

L

eG2D
2

mcβγ
. (11)

Potential, Eq. (10), is similar to that derived earlier for the

4-rod structure, Eq. (5), with different value of transverse

betatron tune μ0.

Figures 1, 4, and 5 contain results of BEAMPATH simu-

lations of 50 keV, 20 mA, 0.05 π cm mrad proton beam in

the focusing structure presented in Fig. 3. Injected beam

with parabolic distribution f = f0

(
1− x2+y2

2R2 − p2
x+p2

y

2p2
0

)
we truncated along equipotential lines of effective poten-

tial (see Fig. 2), to make the beam distribution close to the

matched beam. Adiabatic change of duodecapole compo-

nent along the structure results in gradual transformation

of an initially non-uniform beam distribution into distri-

bution matched with quadrupole channel with suppressed

emittane growth and halo formation.
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