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Abstract 
   The infinite length approximation is often used to 
simplify the calculation of the beam coupling impedance 
of accelerator elements. This is expected to be a 
reasonable assumption for devices whose length is greater 
than the transverse dimension but may be less accurate 
approximation for segmented devices. In this contribution 
we present the study of the beam coupling impedance of a 
finite length device: a cylindrical cavity loaded with a 
toroidal slab of lossy dielectric. In order to take into 
account the finite length, we will decompose the fields in 
the cavity and in the beam pipe into a set of orthonormal 
modes and apply the mode matching method to obtain the 
impedance. To validate our method, we will present 
comparisons between analytical formulas and 3D 
electromagnetic CST simulations as well as applications 
to the evaluation of the impedance of short beam pipe 
inserts, where the longitudinal and transverse dimensions 
are difficult to model in numerical simulations. 

INTRODUCTION 
   The problem of calculating the impedance of finite 
length devices, in particular simple cavities as shown in 
Figure 1, has been approached in different ways: it was 
studied as a field matching problem in [1], and,  
approximated as a thin insert in [2,3].  
   In this application we want to study rigorously the 
electromagnetic fields by means of the mode matching 
method [4, 5]. 

    DESCRIPTION OF THE METHOD 
   The structure we studied is shown in Figure 1: the 
regions I and II represent the cylindrical left and right 
beam pipes where the reflected fields will propagate 
ݖ) ∈ ሺെ∞, 0ሻ ∪ ሺܮ,൅∞ሻ, ݎ ∈ ሺ0, ܾሻሻ, region III is the 
cavity where resonances can be excited (ݖ ∈ ሺ0, ,ሻܮ ݎ ∈ሺ0, ܾሻሻ  and region IV is the toroidal insert ሺݖ ∈ሺ0, ,ሻܮ ݎ ∈ ሺܾ, ܿሻሻ where radial waves can propagate.   
   The beam ߩ௭ሺݎ, ;ݖ ߱ሻ is represented in frequency 
domain as a thin ring of radius	ܽ and charge  ܳ: ߩ௭ሺݎ, ;ݖ ߱ሻ ൌ ܽߨ2ܳ ݎሺߜ െ ܽሻ݁ି௝௞బ௭, (1) 

where ݇଴ ൌ  is the propagation constant of the ܿߚ/߱
beam.  
   In order to handle the problem of determining the 
longitudinal beam coupling impedance, the 
electromagnetic field induced by the source will be 

calculated as a superposition of an impressed and a 
scattered field: ܧതሺ௧௢௧ሻ ൌ തሺ௦௢௨௥௖௘ሻܧ ൅   തሺ௦௖௔௧௧௘௥௘ௗሻܧ

Figure 1: Model studied with the mode matching method.  
   The primary field and the scattered field in all the four 
regions consist in Transverse Magnetic waves: all the 
components can be derived by the longitudinal electric 
field  ܧ௭ . 

Source Fields 
The source field ܧതሺ௦௢௨௥௖௘ሻ is calculated as the field 
induced by the source particle travelling at speed	ܿߚ, i.e. 
representing a current ܬ௭ ൌ  along the axis of the , ܿߚ௭ߩ
perfectly conducting (PEC) beam pipe of radius ܾ.  
This field is given by the following formula, 

௭ሺ௦௢௨௥௖௘ሻܧ ൌ ௕ܳߙ݆ ܼ଴2ߛߨଶܾߚ ቈܭ଴ሺݑሻ െ ሻݔ଴ሺܫሻݔ଴ሺܭ ሻ቉ݑ଴ሺܫ ݁ି௝௞బ௭, (2) 

where ܼ଴ ൌ 376.73Ω the characteristic impedance of 
vacuum, ܭ଴, ݔ ଴ the modified Bessel functions of argumentܫ ൌ ݇଴ܾ/ߛ and ݑ ൌ ݇଴	ݎ. 

Scattered field 
In region I we have the following expression for the 
longitudinal electric field [4, 5]: 

௭ሺ௟௘௙௧ሻܧ ൌ෍࢖࡯ஶ
௣

௣ሻߙଵሺܬߨ√ሻܾܾ/ݎ௣ߙ଴ሺܬ ݁௝ఈ෥೛௭/௕. (3) 

   In region II we have 
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௭ሺ௥௜௚௛௧ሻܧ ൌ෍࢖ࡰஶ
௣

௣ሻߙଵሺܬߨ√ሻܾܾ/ݎ௣ߙ଴ሺܬ ݁ି௝ఈ෥೛ሺ௭ି௅ሻ/௕, (4) 

where	ߙ௣, with ݌ ∈ Ν	, are the zeros of the Bessel 

function	ܬ଴ሺݎሻ,	ߙ෤௣ ൌ ටߙ଴ଶ െ ,௣ଶߙ ଴ߙ ൌ ݇଴ܾ ൌ ߱ඥߤ଴ߝ଴	ܾ, ߙଵ ൌ 2.405. 
   In region IV:  

௭ሺ௥௔ௗሻܧ ൌ෍࢙࡭ஶ
௦ ௦ܹሺߙො௦ݎ/ܾሻܿݏ݋ሺߙ௦ݖ/ܾሻ, (5) 

where the function ௦ܹሺߙ෤௦ݎ/ܾሻ describe the radial waves 
as [4, 5]: 

௦ܹሺߙො௦/ܾሻ ൌ 0ሺ2ሻܪ ൬ߙොܾݎݏ ൰ െ 0ሺ2ሻܪ ൬ߙොܾܿݏ ൰0ܪሺ1ሻ ൬ߙොܾܿݏ ൰ 0ሺ1ሻܪ ൬ߙොܾݎݏ ൰, 
with	ߙௗ ൌ ݇ௗܾ ൌ ߱ඥߤௗߝௗ	ܾ,	ߙ௦ ൌ  where ݀ refers ,ܮ/ܾߨݏ

to the  dielectric insert and  ߙො௦ ൌ ඥߙௗଶ െ  ௦ଶ and ܼௗ isߙ
the characteristic impedance in this region. 
   In region III we can expand the field in a complete set 
of orthonormal modes of TM type associated to 
homogeneous boundary condition on		 ଵܵ, ܵଶ and ܵଷ: 

തሺ௖௔௩ሻܧ ൌ෍࢙࢖ࢂ௣௦ ݁̅௣௦. (6) 

 The longitudinal component of the electric field has the 
following expression: 

௭ሺ௖௔௩ሻܧ ൌ෍࢙࢖ࢂ ௣௦ߙ௣ߙ ටߝ௦ܮஶ
௣௦

଴ܬ ቀߙ௣ܾݎ ቁܾ√ܬߨଵ൫ߙ௣൯ ݏ݋ܿ	 ቀߙ௦ܾݖ ቁ,	 (7) 

where ߙ௣௦ ൌ ඥߙ௣ଶ ൅  .ሽ are the unknowns࢖ࡰሽ and  ሼ࢖࡯ሽ,  ሼ࢙࡭ൟ,  ሼ࢙࢖ࢂ௦ଶ.  In summary four infinite vectors ൛ߙ

Matching Conditions 
   By matching the tangential components of the magnetic 
field on the boundary surfaces	 ଵܵ, 	ܵଶ, ܵଷ, we obtain 3 
functional equations. By means of an ad-hoc projection 
(Ritz-Galerkin method) each functional equation may be 
transformed into an infinite set of linear equations.  
In order to get a fourth equation we should find a tool to 
match the tangential component of the electric field. This 
is not as simple as for the magnetic field since, according 
to the assumed expansion, the tangential component of 
the electric field on the boundary 	ܵ ൌ ଵܵ⋃ܵଶ⋃ܵଷ	is null 
by definition. One has to note that in this case the 
expansion given by Eq. (7) will not converge uniformly 

on the boundaries. However, this difficulty may be 
circumvented by resorting to the following equation [4] 

࢙࢖ࢂ ൌ ଴ଶߙ଴ܾሺߙ െ ௣௦ଶߙ ሻර൫ܧത ൈ ത݄௣௦∗ ൯ௌ ∙  ଴݀ܵ. (8)ݎ̂

   An ad-hoc truncation is applied to the infinite set of the 
linear equations and then the four sets of equations are 
solved. 

Once all the vectors are known, the coupling impedance 
can be easily calculated. 

APPLICATIONS 
A first series of benchmark was done with the standard 

theory and CST particle simulations [6].  

Figure 2: Comparison of the mode matching method (full 
lines) with the standard thick wall formula (dashed lines) 
for various conductivities and b=5cm, c=30cm, 
L=20cm; ௗߝ ൌ ଴ߝ8 െ ݆ ߪ ௗߤ	;߱ ൌ ⁄;଴ߤ 			 ௖݂௢ ൌ ଵܿߙ ⁄ܾߨ2 . 

  In Figure 2 we show the comparison with the standard 
theory for thick wall [7]: the agreement is good for high 
conductivity, while it starts to be significantly different 
for low conductivity at frequencies above cut-off  
(f is normalized to the cut-off frequency	 ௖݂௢). In fact, with 
decreasing conductivity the insert surface impedance 
becomes more and more different from the surface 
impedance of the adjacent pipes I and II. This implies that 
the losses due to the scattered wave into the pipes, which 
can propagate only above cut-off, become comparable to 
those produced into the volume IV. As a conclusion, 
when a pipe exhibits a discontinuity in the surface 
impedance this discontinuity will contribute to increase 
the broad band impedance. This effect is not taken into 
account by the standard theory.  
To complete the picture, in Figure 3 we study the same 
device for low conductivity: the skin depth becomes 
comparable with the transverse dimension of the cavity 
and the transverse field can “see” the cavity’s boundary 
and be reflected giving rise to resonances. This sets a 
lower limit of conductivity for the classical thick wall 
formula validity.     

WEPPR062 Proceedings of IPAC2012, New Orleans, Louisiana, USA

ISBN 978-3-95450-115-1

3070C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

05 Beam Dynamics and Electromagnetic Fields

D05 Instabilities - Processes, Impedances, Countermeasures



 

Figure 3: Application of the mode matching method for 
low values of conductivity. 

   In Figure 4 we show another comparison for a material 
with low conductivity (ߪ ≅ 10ିଶ	ܵ/݉): the cut-off 
between resonant modes and broadband behaviour is 
clearly visible. The discrepancy above cut-off is intrinsic 
to the CST solving tool. 

   

Figure 4: Comparison with CST simulations: b=5cm, 
c=30cm, L=20cm. Material: dr=1, dr=1, =10-2 S/m. 

   Another cross-check was done in order to study the SPS 
flanges impedance. A flange can be seen as a very short 
re-entrance between two beam pipes whose impedance 
cannot be easily studied with CST due to geometrical 
limitations (800 μm gap width with 5 cm beam pipe 
radius) and due to the very low dielectric losses that make 
the Q factor - and then the wake length - very large. 
   The comparison in Figure 5 shows only a partial 
agreement between mode matching and CST simulations 
with some discrepancy for the peak below cut-off (left 
plot). The peak mismatch is due to the fact that the wake 

in CST has not completely decayed: in this case the 
number of mesh cells (10଺) was a limitation (we took a 
rms bunch length of 1.5cm and a maximum wake length 
of 20 m). 

Figure 5: Comparison with CST simulations: b=5cm, 
c=9cm, L=800um. Material: dr=9.9, dr=1, =10-2 S/m. 

Below cut-off, since the dielectric losses are very low, the 
Q is very high; above cut-off (right plot) the peaks are 
lower due to the leak into the beam pipe. The correct 
estimation of the Q factor is very important since these 
resonances could lead to coupled bunch instabilities. 

CONCLUSION 
The longitudinal beam coupling impedance of a finite 

length device was successfully derived and benchmarked 
with existing theory and numerical simulations for the 
longitudinal component of the beam coupling impedance 
in the non ultrarelativistic case. 

Considering the real finite length of a device is 
important both for high conductivity materials, and for 
low conductivity ones: in the first case the impedance 
above cut-off have to include the contribution of the beam 
pipes; in the second case the resonances depend on the 
length of the device and the losses in the material, this 
could lead to beam coupling instability if these modes are 
not properly damped (lowering the Q factor). 

 Further extension to the driving (dipolar) and detuning 
(quadrupolar) impedances is under development. 
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