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Abstract

The thorough study of coherent electron cooling, the

modern cooling technique capable to deal with accelera-

tors operating in the range of few TeVs [1], raises many

interesting questions. One of them is a shielding dynamics

of a hadron in an electron beam. Now this effect is com-

puted analytically in the infinite beam approximation [2].

Many effects are drastically different in finite and infinite

plasmas. Here we propose a method to compute the dy-

namical shielding effect in a finite cylindrical plasma1 - the

realistic model of an electron beam in accelerators.

INTRODUCTION

The problem of shielding of a charge in plasma is repre-

sented by the Maxwell-Vlasov [3] system of equations. For

an infinite plasma this system is exactly solvable [2, 4], for

a finite plasma the extra term appears in the Vlasov equa-

tion, which makes the methods developed for an infinite

plasma inapplicable. First time the Vlasov equation for a

finite KV (Kapchinskij-Vladiirskij) beam [5] was consid-

ered by Gluckstern [6], where he found analytical solutions

for its excitations without any external fields or charges,

his ideas were further developed by Venturini in [7], where

they studied beam’s response to an external field of a spe-

cial form. Here we propose a method to solve dynami-

cal shielding of a test charge in a finite beam, we consider

Maxwell and KV beam distributions, 2D and 3D cases.

We consider an electron beam with Hamiltonian [8]

H0 =
p2⊥

2m0γ
+ αx2

⊥, Hz =
p2z

2m0γ3
, (1)

where α-contribution incorporates focusing and space-

charge field of equilibrium distribution for KV and for

Maxwell in the limiting case. Our interest is a perturbation

of the electron density n1 (~x, t) =
∫

f1 (~x,~v, t) d~v caused

by a moving particle with charge Q, where f1 (~x,~v, t) is a

perturbation of the density in a phase space:

f (~x,~v, t) = f0 (~x,~v) + f1 (~x,~v, t) , (2)

f0 (~x,~v) is an equilibrium distribution, we consider KV in

2D and Maxwell for 3D case. The linearized Vlasov equa-

tion looks as follows:

∂f1
∂t

+~v · ∂f1
∂~x

− 1

m0γ

∂H0

∂~x
· ∂f1
∂~v

=
e

m0γ

∂U

∂~x
· ∂f0
∂~v

. (3)

The third term in the left hand side is an extra term spoil-

ing the methods for an infinite plasma. The method of
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1By plasma we mean a collisionless single-species electron plasma

solving the Maxwell-Vlasov system via integral equation

is discussed in the following sections. The term in the right

hand side, incorporating potentials of the electron density

perturbation and test charge, may cause singularities in the

method. The possible ways to handle them are considered.

MAXWELL DISTRIBUTION IN 3D

Noticing that the left hand side is a full time derivative if

we plug solutions of the Hamilton equations and than doing

integrals over time and velocity we can rewrite equation (3)

as an integral equation:

n1 (~x, t) =
e

m0γ

t
∫

0

∫

∂U

∂~x
· ∂f0
∂~v

∣

∣

∣

∣ ~x = ~X0 (t1)

~v = ~V0 (t1)

d~vdt1,

(4)

where ~X0 (t1) and ~V0 (t1) are unperturbed orbits - solu-

tions of the Hamilton’s equation with H0 and initial condi-

tions ~x = ~X0 (t), ~v = ~V0 (t):










~X0⊥ (t1) = ~x⊥ cos (ω (t− t1))− ~v⊥
ω

sin (ω (t− t1))
~V0⊥ (t1) = ~v⊥ cos (ω (t− t1)) + ~x⊥ω sin (ω (t− t1)) ,

X0z (t1) = xz + vz (t− t1) , V0z (t1) = vz ,
(5)

where ω =
√

α
β

and β = m0γ/2. Assuming boundary

conditions at infinity we have for the potential

U (~x, t1) =

∫

G

n1

(

~x
′

, t1

)

|~x− ~x′ | d~x
′

+ U2 (~x, t1) , (6)

where G is an electron bunch and U2 (~x, t1) is a potential of

a test charge moving along th trajectory Y (t1), the poten-

tial in the equation (4) appears in the formU
(

~X0 (t1) , t1

)

,

which makes the equation functional-integral equation,

which is generally unsolvable either analytically or numeri-

cally, the substitution (6) allows to rewrite the equation as a

standard Fredholm-Volterra equation of second type, solv-

ing the Volterra equation by the Laplace transform we have

for Laplace image of n1 (~x, t):

F (~x, s) = ñ1 (~x, s)− λ

∫

G

ñ1

(

~x
′

, s
)

K
(

~x, ~x
′

, s
)

d~x
′

s,

(7)

where the kernel and other components are

K
(

~x, ~x
′

, s
)

= x
′

⊥L

∫

∂

∂ ~X0 (0)

1
∣

∣

∣

~X0 (0)− ~x
′

∣

∣

∣

·
∂f0

∂~V0 (0)
d~v,

(8)
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λ =
e2

ǫ0m0γ
, F (~x, s) =

e

m0γ
×

× L





t
∫

0

∫

∂

∂ ~X0 (t1)
U2

(

~X0 (t1) , t1
)

·
∂f0

∂~V0 (t1)
d~vdt1



 .

(9)

Integration in the equation (7) is done over rectangular do-

main in which spherical coordinates
(

x
′

⊥, x̂
′

⊥, x
′

z

)

of ~x
′

are considered as Cartesian coordinates of a new vector ~x
′

s

and d~x
′

s ≡ dx
′

⊥dx̂
′

⊥dx
′

z . The equaiton (7) is a Fredholm

equation of the second type, there are well-developed nu-

merical methods for such equations if the kernel has a weak

singularity [9], meaning that the integral
∫

K
(

~x, ~x
′

, s
)

d~x

exists. As it was mentioned in the introduction, the straight-

forward substitution of the KV distribution to the kernel

(8) is not possible - the singularity will not be weak -

the derivative of the KV distribution, which is a delta-

function, is defined by integration by parts and this results

in a second derivative of the potential, which is of the or-

der of 1/ |~x| in 3D, and this second derivative is not inte-

grable.The way to proceed here is to consider Maxwell dis-

tribution in transverse direction f0⊥ = ρδµ (H0 −Hc) =

ρ 1

µ
√
π
e
− (H0−Hc)

2

µ2 , which approaches KV distribution with

µ → 0. The expression for F (~x, s) is divergent for a

point charge, so some finite charge distribution modeling

a hadron should be considered. However in 2D case we

can solve with KV distribution and a point charge.

KV DISTRIBUTION IN 2D

Here we consider 2D problem of screening of a point

charge in a plasma with KV distribution, which is equiv-

alent to screening of a line charge in KV beam. We also

start with the linearized Vlasov equation (3), then we do

Laplace transform f̃1 (~x,~v, s) = Lf1 (~x,~v, t) and multiply

it by et1s

sf̃1e
t1s + ~v

∂f̃1
∂~x

et1s − 1

m0γ

∂H0

∂~x
· ∂f̃1
∂~v

et1s =

=
e

m0γ

∂Ũ (~x, s)

∂~x
· ∂f0
∂~v

et1s. (10)

Plugging the trajectories in this equation and taking into

account that
∂

∂t1

[

f̃1e
t1s

]

= sf̃1e
t1s (11)

we notice that its left hand side is a full derivative:

d

dt1

[

f̃1

(

~X0 (t1) , ~V0 (t1) , s
)

et1s
]

=

=
e

m0γ

∂Ũ (~x, s)

∂~x
· ∂f0
∂~v

∣

∣

∣

∣

∣ ~x = ~X0 (t1)

~v = ~V0 (t1)

et1s, (12)

the unperturbed orbits here are just transverse orbits from

3D case. Integrating over a period of the trajectories 2π
ω

we

have

f̃1

(

~X0

(

t+
2π

ω

)

, ~V0

(

t+
2π

ω

)

, s

)

e(t+
2π
ω )s−

−f̃1

(

~X0 (t) , ~V0 (t) , s
)

ets =

=
e

m0γ

t+ 2π
ω

∫

t

∂Ũ (~x, s)

∂~x
· ∂f0
∂~v

∣

∣

∣

∣

∣ ~x = ~X0 (t1)

~v = ~V0 (t1)

et1sdt1.

(13)

Using periodicity of the trajectories and initial condition of

Hamilton’s equations we have

f̃1 (~x,~v, s) =
e

m0γ

1

e
2π
ω

s − 1
×

×

2π
ω
∫

0

∂Ũ (~x, s)

∂~x
· ∂f0
∂~v

∣

∣

∣

∣

∣ ~x = ~X0 (τ + t)

~v = ~V0 (τ + t)

eτsdτ, (14)

where τ = t1 − t and ~X0 (τ + t) and ~V0 (τ + t) do not

depend on t, so the formula is consistent. Noticing the full

time derivative of Ũ (~x, s) inside the integral:

∂Ũ (~x, s)

∂~x
· ∂f0
∂~v

∣

∣

∣

∣

∣ ~x = ~X0 (τ + t)

~v = ~V0 (τ + t)

=

=2β
∂Ũ

(

~X0 (τ + t) , s
)

∂ ~X0 (τ + t)
· ~V0 (τ + t)

∂f0
∂H0

= (15)

=2β
d

dτ

[

Ũ
(

~X0 (τ + t) , s
)] ∂f0

∂H0

(16)

and integrating by parts over τ we throw the derivative to

eτs as ∂f0
∂H0

doesn’t depend on time. This trick of throwing

a derivative from singular term to nonsingular is not pos-

sible for 3D KV case, because 3D KV distribution is not

a function of the full 3D Hamiltonian, while a product of

two functions of H0 and Hz . Then integrating over ~v with

polar coordinates
(√

ξ, θ
)

we have:

ñ1 (~x, s) =
e

m0γ

s

e
2π
ω

s − 1
δ
(

αx2 −Hc

)

×

×
2π
∫

0

2π
ω
∫

0

Ũ
(

~X0 (τ + t) , s
)
∣

∣

∣

ξ=0

eτsdτdθ +
e

m0γ
×

× s

e
2π
ω

s − 1

2π
∫

0

2π
ω
∫

0

∂

∂ξ
Ũ
(

~X0 (τ + t) , s
)

∣

∣

∣

∣

ξ=ξ∗

eτsdτdθ,

(17)

where ∂f0
∂H0

were transfromed to ∂f0
∂ξ

, integration by parts

over ξ were performed, and ξ∗ = Hc−αx2

β
. For the poten-
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tial in 2D we have

Ũ1

(

~X0 (τ + t) , s
)

=

= − e

4πǫ0

∫

ñ
(

~x
′

, s
)

ln
∣

∣

∣
~x

′ − ~X0 (τ + t)
∣

∣

∣
d~x

′

, (18)

and analogously for Ũ2. These substitutions allow to write
a weakly singular integral equation for ñ1 (~x, s) of the form
(7) with the following kernel and left hand side:

Ks

(

~x, ~x
′
)

= x
′

2π
∫

0

2π
ω
∫

0

(

∂

∂ξ
ln
∣

∣

∣
~x

′

− ~X0 (τ + t)
∣

∣

∣

∣

∣

∣

∣

ξ=ξ∗

+

+ ln
∣

∣

∣~x
′

− ~X0 (τ + t)
∣

∣

∣

∣

∣

∣

ξ=0
δ
(

αx
2
−Hc

)

)

eτsdτdθ,

Fs (~x) =
Q

e
λs

2π
∫

0

2π
ω
∫

0

∞
∫

0

(

∂

∂ξ
ln
∣

∣

∣

~Y (t2)− ~X0 (τ + t)
∣

∣

∣

∣

∣

∣

∣

ξ=ξ∗

+

+ δ
(

αx
2
−Hc

)

ln
∣

∣

∣

~Y (t2)− ~X0 (τ + t)
∣

∣

∣

∣

∣

∣

ξ=0

)

×

× e(τ−t2)sdt2dτdθ, λs = −
e

4πǫ0

e

m0γ

s

e
2π
ω

s
− 1

, (19)

where terms proportional to δ
(

αx2 −Hc

)

are responsible

for surface charge perturbation.

INVERSE LAPLACE TRANSFORM AND

COLLOCATION METHOD

The equations presented in the previous sections can

be solved by the numerical methods from [9]. The next

step is a computation of the inverse Laplace transform [10]

via trigonometric series involving solution of the equations

with complex Laplace variable sk = v + ikπ
T

, the expres-

sion and the meaning of the parameters, applicability con-

ditions and uncertainties can be found in [11].

In the collocation method domain of the equation is sub-

divided into indexed sub-domains Gj, where j is a multi-

index of the dimension of the equation. Then in each sub-

domain the numerated by multi-index m set {ξj,m} of col-

location points is defined and the solution is written in such

a form
(

Re
Im

)

{ñ (~x, sk)} =

m
∑

~m=1

(

cmj (sk)

dmj (sk)

)

φj,m (~x) , (20)

where ~x ∈ Gj, c
m
j (sk) and dmj (sk) are coefficients and

φj,m (~x) are polynomials of some special form . The initial

integral equation with complex sk is equivalent to a linear

system of equations
(

−λA+ µB + I λB + µA
−λB − µA λA+ µB + I

)(

~c
~d

)

=

(

~f
~g

)

,

(21)

where I is a unit matrix and A, B are square matrices de-

fined by
(

A
B

)

=

∫

Gj

(

Re
Im

)

Ks

(

ξi,l, ~ys

)

φj,m (~ys) d~ys, (22)

~c and ~d are coefficients from (20) and

(

~f
~g

)

=

(

Re
Im

)

Fv+i kπ
T

(

ξi,l
)

, (23)

in all these expressions transformation from sets of multi-

indices to a single index or double index for matrices is

done. Computing the inverse Laplace transform of the so-

lutions (20) we have the time dependent perturbation of the

charge density

n (~x, t) =
evt

T

m
∑

~m=1

[

−1

2
cmj (v, 0) +

+

N
∑

k=0

[

cmj (sk) cos
kπ

T
t− dmj (sk) sin

kπ

T
t

]

]

φ
j,m (~x) ,

(24)

where ~x ∈ Gj.

PRESENT STATUS

Currently we have a C++ program which computes (22)

and (23), solves the linear system (21) and gives the final

answer via (24). Multidimensional integrals were calcu-

lated by NAG library and compared with results given by

Mathematica. The program works fine in both cases: 2D

with KV distribution and 3D with the Maxwell one, how-

ever, it is not yet tested enough and we will present our

numerical calculations elsewhere later.
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