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Abstract 
Coherent electron cooling (CeC) relies on Debye 

shielding to imprint information of the ion beam to an 
electron beam [1]. Apart from the density modulation, 
Debye shielding also modulates the energy of electrons, 
which provides additional seeding for the free electron 
laser (FEL) based CeC amplifier and serves as the major 
seeding for compressor based coherent electron cooling 
schemes such as micro-bunched electron cooling (MBEC) 
and enhanced electron cooling (EeC) [2].  

In this work, we calculate the energy modulation of a 
longitudinal slice of the electrons, induced by an ion 
moving in electron plasma with κ-2 velocity distribution. 
The result is then applied to Genesis simulation for 
parameters of the CeC proof of principal experiment and 
the effects of energy modulation are investigated.  

INTRODUCTION 
Coherent electron cooling uses Debye shielding to pick 

up information about the ion beam. In the process of 
Debye shielding, an ion modifies the velocities of the 
surrounding electrons, which then result in their position 
changes. Unless the length of the cooling section is close 
to one-half plasma wavelength multiplied by an integer, 
the energy modulation always presents. For a FEL-based 
CeC system, the energy modulation contributes to the 
initial seeding of the FEL amplifier, which could affect 
the cooler performance. In addition, the electron density 
modulation usually requires a quarter to one half-plasma 
oscillation to develop and for hadron machine with ultra-
high energy such as the LHC, the length of the modulator 
becomes prohibitively long. The velocity modulation, on 
the other hand, develops much faster than the density 
modulation, which makes cooling schemes based on the 
velocity modulation in combination with a compressor 
much more feasible for cooling ultra-high energy hadron 
beam.  

For cold electron beam in a short modulator, the energy 
modulation of a longitudinal slice of electrons has been 
previously derived [3]. In this work, we study the energy 
modulation in a warm electron beam. The energy 
modulation of a longitudinal slice of electrons is directly 
related to the instantaneous current modulation in the 
beam frame. We show that, for ion moving in infinite 
anisotropic electron plasma, the instantaneous current 
modulation can be reduced to a 1D integral. Neglecting 
the effect of finite beam size to the electron velocity 
modulation and assuming that ion moves in the 

longitudinal direction, we obtained the instantaneous 
current modulation for a finite isotropic electron beam. 
Our result is then applied to calculate the energy-
bunching factor for parameters of the CeC proof of 
principal experiment. The effect of the energy modulation 
is investigated by simulating the FEL amplifier with 
GENESIS.   

ENERGY MODULATION IN INFINITE 
ELECTRON PLASMA 

In beam frame, the phase space density modulation 
induced by a moving ion in infinite electron plasma reads 
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with 
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∫ . The Fourier components 

of the current density modulation is then calculated from  
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Inserting eq. (2) into eq. (3) and taking the background 
velocity distribution as 
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yield 
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k ,t( ) + jd
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where βx,y,z  are parameters describing the velocity 

spreads of the electron bean and  
v0  is the velocity of the 

ion. While the first term of eq. (5) is due to the fact that 
the solution is derived in the rest frame, the second term 
of eq. (5) corresponds to the energy modulation of 
electrons and is determined by the following equation: 

 

jd
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where the dot representing the time derivative, 
ω p ≡ n0e

2 / meε0( )  is the plasma frequency and  

         
 
λ

k( ) ≡ ik ⋅ v0 − kxβx( )2 + kyβy( )2 + kzβz( )2 .       (7) 

The time derivative of the instantaneous current density is  
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Inserting eq. (6) into eq. (8) and integrating both sides 
over time produces the instantaneous current modulation 
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It is worth noting that eq. (9) is a general result applicable 
to ion moving with arbitrary velocity in infinite 
anisotropic electron plasma with velocity distribution of 
eq. (4). For ultra-relativistic electron beam, the total 
energy modulation of a slice of electrons in the lab frame 
is determined by the total longitudinal velocity 
modulation in the beam frame: 
             δEi

E0i
∑ =

vi,z
ci

∑ = −Id ,z z,t( ) ⋅ Δzslice
ec

 ,              (10) 

where the summation is over all electrons in the slice, i.e. 
z − Δzslice / 2 < zi ≤ z + Δzslice / 2  , and Δzslice is the 
longitudinal width of the slice. 

ENERGYY MODULATION IN FINITE 
ELECTRON BEAM 

  
   For a transversely finite electron beam, if we assume the 
effects from the finite beam size is small such that eq. (6) 

remains valid in the regions of the beam, the beam frame 
current modulation can be obtained by integrating eq. (6) 
over the beam cross-section and consequently, instead of 
eq. (8), one has 
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where S  is the cross-section of the beam. Calculating eq. 
(11) for arbitrary ion velocities and anisotropic electron 
velocity distribution leads to multi-dimension integrals, 
which requires numerical approach. To proceed 
analytically, hereafter, we assume βx = βy = βz = β ,                

and v0,x = v0,y = 0 . With above assumptions, the beam 
frame current density can be directly calculated from eq. 
(6) as 
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                                                                                      (12) 
where az = β /ω p  is the Debye radius in the beam frame. 

For β = 0  and v0,z = 0 , eq. (12) reproduces the well 
known result,  
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 Integrating eq. (12) over a round beam cross section,         

x2 + y2 ≤ a  yields 
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The average energy modulation of an electron at 
longitudinal location zl  reads 
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where zl is the longitudinal coordinate in the lab 
frame, Lmod  is the modulator length and γ 0  is the 
Lorentz factor of the electron beam. For β = 0  , 

v0,z = 0  and Lmod << β0γ 0c /ω p , eq. (15) reproduces 
the previous  result, derived from a very different 
approach [3] :  

   

ΔE
E

≈ −2Zi
re
a2

Lmod

γ
⋅ zl
zl

− zl
zl

2 + a2 γ 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 .

      

(16) 

Figure 1 plots the energy modulation induced by a rest 
ion for parameters in Table 1 and various electron 
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beam rms energy spreads. As a comparison, the result 
calculated from eq. (16) for a short modulator is also 

 
Figure 1: Energy modulation induced by a rest ion in 
isotropic electron plasma with various rms energy 
spread. The red curve is calculated from eq. (16) and 
other curves are calculated from eq. (15). 
 
Table 1: Parameters Applied in the Simulation for the 
CeC Proof of Principal Experiment 

Beam energy, γ 42.9 
Modulator length 3 m 

Emittances, rms, εn 5 𝜋 ∙𝑚𝑚 ∙𝑚𝑟𝑎𝑑 
Undulator length 7.5 m 
Undulator period 4 cm 

Undulator parameter, aw 0.4 
Peak current, Ipeak 100 A 

Energy spread, rms, 𝛿𝛾/𝛾 1 ∙ 10!! 
Beta function at modulator 4 m 
Beta function at undulator 1 m 

 
plotted, showing the maximal energy modulation for 
electron beam with rms energy spread of 10-3 is a factor 
of 3 smaller than that calculated from eq. (16) 

EFFECTS OF ENERGY MODULATION 
TO AMPLIFIED WAVEPACKET 

We use Genesis simulation to study the effects of the 
energy modulation to the electron density wave-packet 
at the exit of the FEL amplifier. The Debye length for 
the CeC proof of principal experiment is 1.1 µm in the 
lab frame, i.e. much smaller than the 13 µm optical 
wavelength, and hence we put initial seeding into the 
slice of electrons with maximal bunching in the 
simulation, neglecting contributions from other slices. 
Applying previously derived analytical formula for 
density modulation [4], the bunching factor at the 
position of the ion can be calculated as 

b = 1
Nλ

Zi
π

dz exp iα z( ) τ sin τ( )
z + v0,zτ / β( )2 +τ 2

dτ
0

ω pt

∫
−π /α

π /α

∫  , 

where α ≡ 2πaz / λoptγ 0( )  and λopt  is the optical wave 

length of the FEL amplifier. For parameters of Table 1, 

the bunching factor is 1.73×10!! for a rest ion. As the 
first step, only the contribution from the slice with peak  

 
Figure 2: The amplitude of energy modulation factor at 
the slice of the ion as calculated from eq. (17).  
 

 
Figure 3: Simulation result of the wave-packet profile 
at the exit of the FEL amplifier. The red curve is 
simulated without energy modulation and the blue 
curve is simulated with the energy modulation factor.  
 
energy modulation is considered in the simulation. The 
energy modulation factor at the slice of the ion is  

                   bγ =
1
λopt

ei2π zl /λopt
δE zl( )
E0

dzl
−λopt /2

λopt /2

∫ ,    (17) 

with the energy modulation given in eq. (15). Figure 2 
plots the energy modulation factor as a function of 
az,lab / λopt , where az,lab = az /γ 0  is the lab frame Debye 
length. For parameters of Table 1, the energy 
modulation factor is −𝑖1.38×10!! . As shown in 
Fig. 3, the maximal bunching factor at the exit of the 
FEL amplifier increased by 54% with the calculated 
energy modulation factor. 
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