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Abstract 
In this paper we give an analytical solution of TM0n 

mode for wakefields generated by a relativistic electron 
beam passing through plasma-filled capillary 
waveguides. The numerical solution shows that the 
fields of TM0n modes could not be ignored when the 
plasma wave length is comparable with the effective 
radius of the capillary tube, which means that the 
boundaries are not shielded completely by plasma. 
Numerical examples are given in several typical cases. 

MOTIVATION 
Acceleration gradient in plasma wakefields 

accelerators can be much higher than those of 
conventional RF accelerators [1-3], which is attractive 
for the reason of reducing the size and cost of high 
energy electron accelerators. In recent studies and 
experiments [4-6], one promising way in driving a 
plasma wave with strong longitudinal electric field, is 
using a capillary discharge waveguide with an intense 
electron beam passing through. In these studies, the 
regime of plasma waves, known as blowout or bubble 
regime, is highly nonlinear, where the drive pulse is 
intense and short enough to drive the first wake into 
breaking. In this regime, only one wakefield bubble is 
loaded with electrons, which means nonlinear positron 
wakes are much smaller than those of the 
corresponding electron case [7]. However, for the 
possible applications of plasma wakefields accelerators 
for future high energy electron-positron colliders, not 
only electrons but also injected positrons need to be 
accelerated to high energy. In order to accelerate 
positrons by plasma wakefields, plasma waves could 
be switched from blowout regime to linear regime by 
decreasing the plasma density. In this case, there will 
be accelerating fields for positions as the same gradient 
as for electrons. 

Under the linear responses and no boundaries 
assumptions, wakefields in the plasma generated by a 
charged beam were completely studied in 1980s [8]. 
However the cylindrical capillary tube is a slow wave 
structure similar to a conventional dielectric wakefields 
accelerator. Therefore, eigen RF waves of Cherenkov 
radiations will be excited when a charged beam passing 
through [9-11], as well as the plasma waves. For the 
blowout regime, electrons density in the plasma is 
usually 1018~1019 cm-3, and the corresponding plasma 

wavelength is much smaller than the radius of capillary 
tube (~100um). Because of the shielding effects by the 
plasma, it approaches to no boundaries case with 
nearly zero eigen RF fields, which can also be seen in 
our numerical results. When the plasma electron 
density is down to some value in the linear regimes, the 
eigen RF fields will be several percent of those of 
plasma waves or even more, which means eigen RF 
modes could not be ignored in this case. Some 
numerical examples are given as a reference. 

ANALYTICAL SOLUTIONS FOR THE 
WAKE FIELDS 

The plasma filled dielectric capillary tube is a 
cylindrical structure which consists of a plasma 
channel with radius a surrounded by an isotropic 
dielectric with radius b, and outmost metallic 
waveguide.  

 
Figure 1: Cross-section of a plasma filled dielectric 
tube. 

The plasma can be seen as a collective dielectric in 
the approximation of linear regime with a dielectric 
constant, 

 2 21 .p p   (1) 

Considering a source particle traveling with velocity 
v= c along the cylindrical channel at a offset r0 to its 
axis, the particular and general solutions of the 
longitudinal electric fields in frequency domain can be 
found analytically as [12], 
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Using the conditions of continuity for Ez and Dr at 
inner boundary r = a, the coefficients A0 and B0 can be 
solved for TM0n modes,  

 ____________________________________________  
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In the above the following abbreviations have been 
used, 
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Then we can define an eigen function by using the 
denominator of the coefficient A0, 

 2 2 0 0 1 0 0p p rEF k k p I k p I   (5) 

Synchronized frequency  and dispersion relation -
vp can be found by solving EF( )=0. Finally, in order 
to obtain the time and space dependent wakefields in 
the plasma channel, one needs to take the inverse 
Fourier transforms of the complete solution, 
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Note that p in plasma region is not a constant but a 
function of synchronized frequency , thus the 
solutions of eigen RF wakefields in the plasma-filled 
dielectric structure are much different with those for 
conventional dielectric wakefields structure with no 
plasma case.  

NUMERICAL CALCULATIONS 
Based on the equations above, we calculate the 

monopole modes excited by a Gaussian drive beam 
inside the plasma channel with a = 100 m, b = 200 

m, r = 2.5, plasma density ne = 1016 cm-3 (then 
plasma frequency fp  8980×ne

0.5 = 898 GHz), beam 
length and size r = z = 20 m. Since the wakefields 
excited by the beam have to be synchronized to the 
relativistic beam, the phase velocity has to be matched 
to the beam velocity (vp  c). 

 
Figure 2: Eigen function as a function of frequency. 

Shown in Fig. 2, the prime 4 poles are located at 740 
GHz, 898 GHz, 1.703 THz and 2.782 THz. The first, 
third and fourth poles are corresponding to TM01, TM02 
and TM03 RF modes. However, as the wave with f = 
898 GHz is quite special, the dielectric constant p = 1-

p
2/ 2 turns to be zero in the plasma. Then the 

longitudinal wakefields in time and space domain at 
this frequency of the plasma wave can be analytically 
obtained, 
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which is just the wakefields of Langmuir wave excited 
by the plasma oscillation. If we consider a structure 
with an infinite radius a and a drive particle with an 
offset r0=0, Eq. (7) can be simplified as, 
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which is exactly the same as the results by considering 
the plasma as a fluid without boundaries [8].  

There are two differences between plasma wave and 
TM waves. One is the group velocity of plasma wave 
vg = d /dk = 0, the other is that the the I0 term of 
plasma wave in Eq. (7) perform an accelerating field 
for the source particle itself. Even so, the total 
wakefields of all the waves perform decelerating fields. 

By taking some calculation, it appears that the 
longitudinal components of the eigen RF waves reach 
several percent of the longitudinal fields of the plasma 
wave (shown in Table. 1). 
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Table. 1. Parameters of the Prime 4 Waves Excited by 
a Relativistic Gaussian Beam with r= z =20 m 

Modes frequency 
(GHz) vg/c Amplitude of Ez 

(MV/m/nC) 

TM01 740 0.324 189.4 

Plasma wave 898 0 6459 

TM02 1703 0.434 188.8 

TM03 2782 0.495 86.7 

 
Figure 3: Time profile of the longitudinal wakefields of 
the prime 3 TM waves (blue) and the plasma wave 
(red). 

While keeping other parameters, the amplitudes of 
the TM wave and the plasma wave as a functions of the 
plasma density are shown in Fig. 4.  

 
Figure 4: Wake amplitude of the TM01 wave (blue) and 
the plasma wave (red) as functions of plasma density. 

For the high plasma density cases (ne > 1016 cm-3), it 
shows that the strength of TM01 mode turns down 
rapidly while increasing the plasma density, and the 
plasma wave strength is proportional to the plasma 
density ne. Note that the strongest TM0n mode may be 
not the TM01 mode but rather a higher mode of which 
the synchronized frequency is more close to p in case 
of TM01 p. Even so, all the TM waves reach nearly 
zero in high ne case.  

For the low plasma density cases (ne < 8×1015 cm-3), 
the plasma wavelength is smaller than the effective 
structure radius (reff = a+ r×(b-a) = 350 m, the 
corresponding plasma density to this wavelength is just 
8×1015 cm-3). In this case the boundaries are not 
shielded completely by plasma. Then eigen TM waves 
can be excited and cannot be ignored since they’re 
much stronger than the plasma wave.  

SUMMARY 
We derived analytical formulas for calculating the 

wakefields in plasma filled dielectric capillaries excited 
by a relativistic electron beam and checked some 
numerical examples for some typical cases. If the 
plasma density is down to a low value so that plasma 
wavelength is larger than structure radius, both eigen 
RF waves and plasma waves can be excited. Further 
studies, such as beam break up caused by dipole modes 
due to beam offset to the axis at low plasma density, 
are needed for controlling the beam instability. 

We would like to thank Xinlu Xu for checking the 
analytical formulas for the plasma region. 
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