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Abstract

In this paper we analyze the projected emittance (2D)

and the intrinsic emittance (4D) reconstruction method by

using the beam size measurements at different locations.

We have studied analytically the conditions of solvability

of the systems of equations involved in this process and we

have obtained some rules about the locations of the mea-

surement stations to avoid unphysical results. Simulations

have been made to test the robustness of the algorithm in

realistic scenarios with high coupling. The special case

of the multi-Optical Transition Radiation system (m-OTR),

made of four measurement stations, in the Extraction Line

(EXT) of ATF2 is being studied in much detail. The re-

sults of these studies will be very useful to better determine

the location of the emittance measurement stations in the

diagnostic sections of Future Linear Colliders.

INTRODUCTION

The reconstruction of the projected emittance (2D) and

the intrinsic emittance (4D) implies the computation of the

entire beam matrix envelope [1] at a certain location of a

beam line, which can be done from measurements and lin-

ear transformations of the beam distribution [2, 3]. These

emittances are obtained by numerically solving three sep-

arated systems of coupled equations. In this paper we

present first an analytical study of the conditions of solv-

ability of these systems of equations and their implications

on the emittance reconstruction in order to avoid unphysi-

cal results [4]. In a second part we perform realistic track-

ing simulations in high coupling scenarios in the Extraction

Line (EXT) of ATF2 to test the robustness of the method in

the m-OTR system of this line.

2D AND 4D EMITTANCE
RECONSTRUCTION

The transverse beam phase space could be described by
the transverse beam envelope matrix [1]:

σ =

⎛
⎜⎜⎝

〈x2〉 〈xx′〉 〈xy〉 〈xy′〉
〈xx′〉 〈x′2〉 〈x′y〉 〈x′y′〉
〈xy〉 〈x′y〉 〈y2〉 〈yy′〉
〈xy′〉 〈x′y′〉 〈yy′〉 〈y′2〉

⎞
⎟⎟⎠ (1)

It consists of a symmetric matrix whose ten independent

elements are the second moments of the beam distribution.

For instance, σ1 = 〈x2〉 and σ8 = 〈y2〉 are the horizontal

and vertical beam size, respectively. The elements σ3, σ4,

σ6 and σ7 represent the coupling terms.
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The measurement of the second moments 〈x2〉, 〈y2〉 and
〈xy〉 at different locations of the beam line allows to re-
construct the ten elements of the transverse beam envelope
matrix (1). The horizontal and vertical projected emittance
(2D) as well as the intrinsic emittance (4D) could be cal-
culated directly from these terms. Let us denote the mea-

sured values by σ̂
(i)
1 , σ̂

(i)
8 , σ̂

(i)
3 at the measurement stations

labelled with i = 1, 2, . . . , N , being N the number of sta-
tions. Assuming that the transport matrices are uncoupled,
the beam matrix envelope could be determined by solving
the three systems of coupled linear equations:

MX

⎛
⎝
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σ5

⎞
⎠ =
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⎟⎟⎟⎠ (2)

MXY

⎛
⎜⎜⎝
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⎟⎟⎠ =

⎛
⎜⎜⎜⎝

σ̂
(1)
3

σ̂
(2)
3

. . .

σ̂
(N)
3

⎞
⎟⎟⎟⎠ (3)

where the matrices MX , MY and MXY are defined by:

MX =

⎛
⎜⎜⎜⎝

R
2(1)
11 2R

(1)
11 R

(1)
12 R

2(1)
12

R
2(2)
11 2R

(2)
11 R

(2)
12 R

2(2)
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. . . . . . . . .
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11 2R

(N)
11 R

(N)
12 R

2(N)
12

⎞
⎟⎟⎟⎠ (4)
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⎛
⎜⎜⎜⎝
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2(1)
33 2R

(1)
33 R

(1)
34 R

2(1)
34
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33 2R
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34
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⎟⎟⎟⎠ (5)
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R
(N)
11 R

(N)
33 R

(N)
11 R

(N)
34 R

(N)
12 R

(N)
33 R

(N)
12 R

(N)
34

⎞
⎟⎟⎠

(6)

Analytical Conditions

Projected Emittance (2D) In the general case of N
measurement stations, one has to consider the N × 3 ma-

trix MX and its associated augmented N × 4 matrix. The

system (2) has a unique solution (σ1, σ2, σ5) if and only if

the rank of both MX and M∗
X matrices is equal to three.

That means that the determinants of all 3 × 3 minors of

MX should not vanish, and the determinants of all 4 × 4
minors of M∗

X should be equal to zero. Define the 3 × 3
minors of the MX matrix by the row indices (i, j, k), with

i, j, k = 1, 2...N . In terms of the Twiss parameters the
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Figure 1: Beam transverse distribution at the entrance of the EXT line, coupled with r = −0.4, and at the four OTR

stations.

determinants of such minors are written as

Δ3x(ijk) = 2β(i)
x β(j)

x β(k)
x sinφ(ji)

x sinφ(ki)
x sinφ(kj)

x

(7)

Analogously, the 4 × 4 minors of the augmented matrix

M∗
X are characterized by the row indices (i, j, k, l). Its de-

terminants are written as

A4x(ijkl) = −σ̂
(i)
1 Δ3x(jkl) + σ̂

(j)
1 Δ3x(ikl)

−σ̂
(k)
1 Δ3x(ijl) + σ̂

(l)
1 Δ3x(ijk)

(8)

The first condition is that Δ3(ijk) �= 0, which is equivalent

to the condition that the betatron phase advance differences

should not be an integer multiple of π:

φ(ji)
x �= nπ , ∀(i, j) (9)

This is the only required condition in the case of 3 measure-

ment stations. For four or more stations, a second condition

is required to get a unique solution:

−σ̂
(i)
1 Δ3x(jkl) + σ̂

(j)
1 Δ3x(ikl)

−σ̂
(k)
1 Δ3x(ijl) + σ̂

(l)
1 Δ3x(ijk) = 0 , ∀(i, j, k, l) (10)

One can see that Eq. (9) contains only optical restrictions

about the betatron phase advances, which are easily under-

stood: the measurement stations should be located at places

where the phase advances correspond to different snapshots

of the beam. If the number of stations is greater than 3, one

should located them in such a way that this condition is ful-

filled for any combination of three stations. Otherwise one

deals with meaningless solutions, introducing unnecessary

noise which eventually lead to unphysical results. Besides

the phase advances, Eq. (10) involves also the amplitudes

β
(i)
x and the measured values of σ̂

(i)
1 . Obviously, due to

the statistical variance of the latter, the equality implied by

Eq. (10) cannot be exactly satisfied. One could calculate

the variance of the lhs entering Eq. (10) by using stan-

dard error mechanism, and reject measured values leading

to combinations greater than some previously fixed error

bar. Finally, and for the same reasons mentioned for Eq.

(9) to avoid unphysical results, the equality (10) should be

satisfied for any combination of 4 stations.

An analogous condition for the vertical plane can be

written by changing σ̂
(i)
1 for σ̂

(i)
8 .

Coupling Terms Let us now consider the system (3).

A minimum of four measurements are required to obtain

the coupling terms σ3, σ4, σ6 and σ7. Besides the N × 4

matrix MXY one has to consider also its associated aug-

mented N×5 matrix. The system (3) has a unique solution

(σ3, σ4, σ6, σ7) if and only if the rank of both MX and M∗
X

matrices is equal to four. That means that the determinants

of all 4×4 minors of MX should not vanish, and the deter-

minants of all 5×5 minors of M∗
X should be equal to zero.

Proceeding along the same lines as in the previous case for

the projected emittances, we could write the determinants

of the 4 × 4 minors of MXY and the determinants of the

5×5 minors of the augmented matrix in terms of the Twiss

parameters [4]. Therefore the necessary and sufficient con-

ditions to have a unique solution are:

cos
(
φ
(ji)
x + φ

(lk)
x

) [
cos

(
φ
(ki)
y + φ

(lj)
y

)
− cos

(
φ
(ki)
y − φ

(lj)
y

)]

+cos
(
φ
(ki)
x + φ

(lj)
x

) [
cos

(
φ
(ji)
y − φ

(lk)
y

)
− cos

(
φ
(ji)
y + φ

(lk)
y

)]

+cos
(
φ
(ji)
x − φ

(lk)
x

) [
cos

(
φ
(ji)
y + φ

(lk)
y

)
− cos

(
φ
(ki)
y + φ

(lj)
y

)]

�= 0 , ∀(i, j, k, l)
(11)

This is the only condition required in the case of four

measurement stations. Similarly to Eq. (9) , it restricts the

optical properties. Notice that in the particular case where

φ
(ji)
x = φ

(ji)
y the system has no solution. When more than

four measurement stations exist an additional condition is

required:

−σ̂
(i)
3 Δ4(jklm) + σ̂

(j)
3 Δ4(iklm)− σ̂

(k)
3 Δ4(ijlm)

+σ̂
(l)
3 Δ4(ijkm)− σ̂

(m)
3 Δ4(ijkl) = 0 , ∀(i, j, k, l,m)

(12)

respectively. Notice that the indices i, j, . . . entering these

conditions represent each station. They take values from 1

to N and should be different from each other. As discussed

for Eq. (9) and Eq. (10), these conditions should be sat-

isfied for any combination of 4 or 5 station. Besides, the

same argument concerning the experimental uncertainties

of σ̂
(i)
3 applies for Eq. (12).

TRACKING SIMULATIONS

We have performed realistic tracking simulations in high

coupling scenarios in the EXT line of ATF2 to test the ro-

bustness of the method in the mi-OTR system located in

this line. Simulations have been carried out using the ATF2

optics version V5.1 in MADX, and including multipoles.

The coupling at the entrance of the EXT line has been gen-

erated assuming a Gaussian distribution in transversal di-

rections. We can generate a 4D uncoupled Gaussian phase
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Table 1: Nominal optics parameters of the EXT line of ATF2, simulated beam sizes at the entrance of the EXT line and at

each OTR station, and projected (2D) and intrinsic (4D) emittances.

Nominal optics V5.1

Entrance OTR0 OTR1 OTR2 OTR3

βx (m) 6.849 6.305 10.654 4.125 7.458 εx (m rad) 2.00× 10−9

βy (m) 2.936 6.190 4.343 10.971 5.430 εy (m rad) 1.18× 10−11

μx/2π 0 2.884 2.905 3.014 3.104
μy/2π 0 2.146 2.200 2.277 2.402

Tracking

r = 0 εx (m rad) 1.964× 10−9

σ1 (m2) ×10−8 1.375 1.291 2.177 0.827 1.480 εy (m rad) 1.196× 10−11

σ8 (m2) ×10−11 3.605 7.490 5.193 12.923 6.432 ε1 (m rad) 1.964× 10−9

σ3 (m2) ×10−12 −5.002 2.588 −5.448 −8.517 5.076 ε2 (m rad) 1.197× 10−11

r = −0.4 εx (m rad) 1.963× 10−9

σ1 (m2) ×10−8 1.357 1.295 2.180 0.821 1.470 εy (m rad) 2.689× 10−11

σ8 (m2) ×10−11 4.292 19.068 20.141 64.508 20.968 ε1 (m rad) 1.959× 10−9

σ3 (m2) ×10−9 −0.331 0.974 1.565 2.018 1.080 ε2 (m rad) 1.240× 10−11

r = −0.8 εx (m rad) 2.479× 10−9

σ1 (m2) ×10−8 1.346 1.289 2.168 0.821 2.168 εy (m rad) NaN

σ8 (m2) ×10−11 10.351 46.230 62.413 234.41 62.413 ε1 (m rad) 2.496× 10−9

σ3 (m2) ×10−9 −0.961 1.718 2.990 4.220 2.990 ε2 (m rad) NaN

space distribution (no dispersion) using the following ex-

pressions:

x = [g1]
√
βxεx, x

′ = [g2]
√

εx
βx

− [g1]αx

√
εx
βx

y = [g3]
√
βyεy, y

′ = [g4]
√

εy
βy

− [g3]αy

√
εy
βy

(13)

where [g1], [g2], [g3] and [g4] are standard normal random

variables. A 4D coupled phase space can be obtained from

the uncoupled one in a symplectic way by means of the

following transformation [5]:

⎛
⎜⎜⎝
xc

x′
c

yc
y′
c

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 c1 c2
0 1 c3 c4

−c4 c2 1 0
c3 −c1 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x
x′

y
y′

⎞
⎟⎟⎠ (14)

where four coupling parameters c1, c2, c3 and c4 are de-

fined. Demanding this transformation matrix V to be sym-

plectic, i.e. detV = 1, we can write one parameter in

terms of the other ones: c4 = c2c3/c1. In this scenario we

can define [6] a coupling coefficient r = σ3/
√
σ1σ8.

For instance, Fig. 1 shows the beam transverse distribu-

tion generated at the entrance of the EXT line with a cou-

pling of r = −0.4 and the beam distribution from tracking

simulations at the different OTR measurement stations. Ta-

ble 1 summarizes the nominal optics parameters, the beam

sizes from simulations and the 2D and 4D emittances cal-

culated by solving the system of equations (2) and (3).

CONCLUSIONS
We have studied the mathematical conditions for the ex-

istence and unicity of solutions of the systems of equations

involved in the process of emittance reconstruction. We

have shown that there are four general conditions which

should be satisfied to get physical solutions. The repeti-

tion of the measurements, i.e, statistics, only gives us a

lower value of the variance of the measurement. The re-

sults of the present analysis will be very useful to better

determine the location of emittance measurement stations

in a design phase for the diagnostic sections of Future Lin-

ear Colliders. Simulations performed to test the robustness

in high coupling scenarios agree with the analysis of the

conditions.
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