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Abstract 
Low energy beam transport (LEBT) is an important 

element of accelerator facilities used to provide beam 
matching between particle source and accelerator 
structure, perform required beam diagnostics 
measurements, dispose extra particle components, and 
create necessary time structure of the beam. Most existing 
ion LEBT are based on solenoid focusing. On this paper 
we discuss the matched design criteria for ion LEBT with 
magnetostatic focusing. Specifically, we show how the 
dynamics in LEBT can be optimized in terms of 
maximizing acceptance of the channel and transported 
beam current. 

LATTICE OF PERIODIC SOLENOID 
CHANNEL 

Consider a focusing lattice consisting of a periodic 
sequence of focusing solenoids of length D, field B, 
distance between lenses l, and period L= l+D (see Fig. 1). 
A matched beam reaches it’s maximum size in the center 
of solenoids, and minimum size in the middle of drift 
space (see Fig. 2). The transformation matrix in rotating 
frame through a period of the structure between centers of 
solenoids is given by 
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where θ = qBD / (2mcβγ )  is the rotational angle of 
particle trajectory in a solenoid. The matrix of 
transformation through the period of the structure between 
centers of drift space is: 
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From the matrices (1) and (2), the value of betatron tune 
shift per period, , is determined by  

 
 
 

 
Figure  1: Periodic structure of focusing solenoids.  

  
Figure 2: Matched beam in periodic focusing structure. 

 
 
cosμo = cosθ −θ sinθ(L − D) / (2D) . Adopting the 
expansions  and 

, the value of betatron tune shift per 
period reads: 
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Thus, the maximum and minimum values of beta-function 
βmax/min = m12 / sinμo  in the channel are given by: 
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L cos2

θ
2
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βmin =
(L − D)cosθ − (L − D)

2θ
4D

sinθ + D sinθ
θ
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 .  (5) 

 

Eqs. (4), (5) determine the maximum Rmax = βmax ∋  and 

minimum Rmin = βmin ∋  matched envelope of the beam 
with unnormalized emittance of  and negligible beam 
current, I = 0. Acceptance of the channel with aperture 
radius of a is given by A = a2 / βmax . 

If the length of the lens is significantly smaller than 
the period of the structure, D / L <<1 , focusing properties 
of the solenoid can be represented by a thin lens with a 
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focal length of f = D /θ 2 . Phase advance of the structure 
is simplified by the expressions cosμo ≈1−θ

2L / (2D) , 
from which the phase advance is determined as 

μo ≈θ L /D . From the condition , the 
stability criteria for particle oscillations is expressed as 
0 ≤ L ≤ 4 f . Acceptance of the channel is simplified as 

A ≈ (a2 / L)sinμo  and has a maximum at the value of 
, or f = L / 2  [1]. In this case, the ratio of 

matched beam sizes is Rmax / Rmin = 2 . 

 
 

AVERAGED ENVELOPE EQUATION 
FOR SPACE-CHARGE-DOMINATED 

BEAM 
 

 

Analysis presented above gives us the ability to match 
a beam with negligible current. For analysis with non-zero 
current, I ≠ 0 , let us use the KV envelope equation for a 
round beam envelope R(z)  in an axially-symmetric 
channel: 

d 2R

dz2
− ∋2

R3
+ k(z)R − P

2

R
= 0 , (6) 

 

where P2 = 2I / (Icβ
3γ 3 )  is the generalized beam 

perveance, Ic = 4πεomc
3 / q = 3.13×107A / Z  [Amp] is 

the characteristic beam current, and 
k(z) = [qB(z) / (2mcβγ )]2 is the focusing term. The square 
of magnetic field along the structure can be expanded as 
Fourier series: 
 

B2 (z) = B2[D
L
+ 2
π

sin(πkD / L)
kk=1

∞

∑ cos(2πkz / L)] . (7) 

 

Taking advantage of this expansion, the solution of Eq. 
(6) in smooth approximation i.e. R(z) = Raver (z)[1+ϑ(z)] , 
can be represented as a combination of a slow variable 
Raver (z)  and a quickly oscillating component ϑ(z) . The 
slow component is described by the envelope equation in 
a continuous focusing field with constant focusing 
frequency μo: 
 

d 2Raver
dz2

− ∋2

Raver
3 + μo

2Raver −
P2

Raver
= 0 ,         (8) 

 
while the rapidly varying component is defined by the 
oscillating focusing term of the envelope equation: 
 

ϑ(z) ≈ μo
2

2π 2

sin(πD / L)
(πD / L)

sin(2π z / L) . (9) 

 

The maximum value of the fast oscillating function, 
ϑmax = (μo

2 / 2π 2 )sin(πD / L) / (πD / L) , determines the 
minimum and maximum matched beam envelope in 
presence of space charge: 

Rmax / min = Raver (1 ± μo
2

2π 2

sin(πD / L)
(πD / L)

) ,   (10) 

 

where Raver = Raver (0) bo + 1+ bo
2  is the average 

matched beam envelope, Raver (0) = ∋ L / μo  is the 
matched average beam size with negligible space charge, 
and bo = (βγ )

−3(I / Ic )(Raver (0)/ ∋)
2  is the space charge 

parameter. The envelope equation gives an approximation 
to the acceptance of the channel: 
 

Aenv =
a2μo

L(1+ϑmax )
2  ,  (11) 

 

and to the maximum beam current: 
 

Imax =
Ic
2

μo

L
Aenv (βγ )

3[1 - (
∋
Aenv

)2 ] .  (12) 

 

The validity of the above formulae is largely 
determined by the validity of the smooth approximation in 
the envelope equation, which holds for the values of 

. 
 

SPACE-CHARGE LIMITED BEAM 
CURRENT  

 
Eq. (12) gives an approximate value of the maximum 

beam current in a periodic structure. To determine a more 
exact value for space - charge limited beam current, 
consider beam transport in drift space between lenses 
described by envelope equation (6) without a focusing 
term: 

d 2R

dz2
− ∋2

R3
− P

2

R
= 0 .  (13) 

 

Equation (13) can be integrated [2]: 
 

(
dR

dz
)2 = (dR

dz
)o
2 + ( ∋

Ro
)2 (1− Ro

2

R2
)+ P2 ln( R

Ro
)2 .     (14) 

 
Now consider the space charge dominated regime, where 
beam emittance can be neglected, . At the middle 
point between lenses, z = zo, the beam has a waist size Ro 
= Rmin and zero divergence, Ro

' = 0 . Thus, equation (14) 

can be rewritten in this case as (dR / dZ )2 = lnR , where 

R = R / Rmin , and Z = 2 z P / Rmin . Consequently, 

expansion of beam radius in drift space from R = 1  to 
Rmax = Rmax / Rmin  is determined by the integral: 

 

1

Rmax

dR

lnR1

Rmax

∫ = 2P
(z − zo )
Rmax

.    (15) 

 

The left hand side of Eq. (15) has a maximum value of 
1.082 for Rmax  = 2.35 [3]. As already alluded to above, 
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the maximum radius is achieved in the channel at 
z − zo = L / 2 , which in turn yields 

PmaxL / ( 2Rmax ) = 1.082 . From this expression, the 

maximum transported current in the channel is  
 

I lim = 1.17Ic (βγ )
3(
Rmax
L
)2 .  (16) 

 
The divergence of the beam at the lens can be 

estimated from Eq. (14): 
 

dRmax
dz

= 4I lim
Ic (βγ )

3 ln(
Rmax
Rmin

) ≈ 2 Rmax
L

. (17) 

 
Total change in slope of the beam envelope at the lens has 
to be equal to twice the value of dRmax / dz  determined by 

Eq. (17). Therefore, the required focal length of the lenses 
is f ≈ L / 4 , and the maximum space charge limited beam 
current is achieved in a structure where μo ≈180

o . Such 
transports are usually unstable, and can be used only with 
a limited number of focusing elements.  
 

APPLICATION TO INJECTOR LEBT 
 

Most existing ion LEBTs utilize 2 or 3 solenoids with 
intermediate equipment (deflectors, bending magnets, 
Wien filters, emittance stations) to match the beam from 
the exit of ion source column to the subsequent RF 
structure. Consider a LEBT comprised of 2 solenoids, 
separated by a distance L (see Fig. 3). The beam is 
characterized by a certain emittance  э  and effective 
current I = Io (1−η) , where Io  is the total beam current 
and  is the space-charge neutralization factor. Initial 

envelope parameters Rs , Rs
'  are determined by extraction 

conditions from the ion source column. Final beam 
parameters Rf , Rf

' , are determined by the matching 
conditions at the front end of the RF accelerator. The 
purpose of the design is then to find appropriate solenoid 
parameters, and distances d1, d2. 

Analysis of the previous section allows us to select 
periodic matched beam envelopes, corresponding to 
minimal values of the beam size at the center of solenoid. 
Minimization of the beam size Rmax allows us to minimize 
solenoid power consumption, beam losses, and space-
charge induced beam emittance growth. Value of Rmax can 
be approximately obtained from Eq. (10). More precise 
value of Rmax is determined by variation of the value of 
Rmin at the middle point between solenoids, z = zo, and 
searching for the smallest value of the beam size at the 
center of solenoids via an exact solution of the envelope 
equation in drift space between solenoids (see Fig. 3). 
Then, the distances d1, d2 are defined by integration of 
equation (14) to establish points where the beam radius 
evolves from initial value of Ro to Rmax [2]: 

 

 

 
Figure 3: LEBT with two focusing solenoids. 

 

z = Ro
2

2 ∋
ds

[1+ (RoRo
'

∋
)2 ]s + (PRo

∋
)2 s ln s −1

1

(
Rmax
Ro

)2

∫ .   (18) 

 

In Eq. (18), the values of Ro , Ro
'  correspond to either 

Rs , Rs
'  or Rf , Rf

' . Slopes of beam envelopes at solenoids 

R1
' , R2

'  can be found from Eq. (14): 
 

R' = (Ro
' )2 + ( ∋

Ro
)2[1− (Ro

R
)2 ]+ 2I

Ic (βγ )
3 ln(

R

Ro
)2 .  (19) 

 

The values of R1d
' , R2d

'  are determined by Eq. (19) 
assuming Ro = Rmin , Ro

' = 0 . Then, focal lengths of 
solenoids f1, f2, are determined by the total change in the 
slope of the beam at each solenoid: 
  

f1 =
Rmax

R1d
' + R1

'
,        f2 =

Rmax
R2d
' + R2

'
.          (20) 

 
After that, the magnetic field within each solenoid is 
determined by B = 2mcβγ / (q f D ) .  
 

SUMMARY 
 

In this work, we have determined matched beam 
transport conditions for a periodic structure of focusing 
solenoids in both, emittance-dominated and space-charge-
dominated regimes. A closed-form expression for the 
maximal limited beam current in the considered structure 
is obtained. The developed analysis is subsequently 
applied to the problem of beam matching in a typical 
LEBT with two solenoids. 
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