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Abstract
We give necessary and sufficient conditions that two sets

of positive real numbers must satisfy in order to be realiz-
able as eigenemittances and projected emittances of a beam
matrix. The information provided by these conditions sets
limits on what one can to achieve when designing a beam
line to perform advanced emittance manipulations.

INTRODUCTION
Projected emittances are quantities which are used to

characterize transverse and longitudinal beam dimensions
in the laboratory coordinate system and are invariants under
linear uncoupled (with respect to the laboratory coordinate
system) symplectic transport. Eigenemittances are quanti-
ties which give beam dimensions in the coordinate frame
in which the beam matrix is uncoupled between degrees of
freedom and are invariants under arbitrary (possibly cou-
pled) linear symplectic transformations. If the beam ma-
trix is uncoupled already in the laboratory frame, then the
set of projected emittances coincides with the set of eigene-
mittances, and if the beam matrix has correlations between
different degrees of freedom, then these two sets are differ-
ent. This fact, though looking simple, has interesting ap-
plications in accelerator physics and gives the theoretical
basis for the round-to-flat transformation of angular mo-
mentum dominated beams invented by Derbenev [1]. In
his scheme the beam with equal transverse projected emit-
tances (round beam) but with nonequal eigenemittances is
first produced in an axial magnetic field. Then the corre-
lations in the beam matrix are removed by a downstream
set of skew quadrupoles and projected emittances become
equal to the eigenemittances, which means that the beam
transverse dimensions become different from each other.
This work and further development of the advanced

emittance manipulation techniques (see, for example [2,
3, 4] and references therein) naturally raise the follow-
ing question: what are the relations between projected
emittances and eigenemittances? As concerning already
known results, in general situation they are limited to the
so-called classical uncertainty principle, which states that
none of projected emittances can be smaller than the min-
imal eigenemittance (see, for example, [5]). Besides that,
in the specific two degrees of freedom case, a number of
useful results can be found in [6].
The purpose of this article is to give the necessary and

sufficient conditions which two sets of positive real num-
bers must satisfy in two and three degrees of freedom cases
in order to be realizable as eigenemittances and projected

∗ vladimir.balandin@desy.de

emittances of a beam matrix.

BEAMMATRIX AND EMITTANCES
Let us consider a collection of points in 2n-dimensional

phase space (a particle beam) and let, for each particle,
z = (q1, p1, . . . , qn, pn)

� (1)
be a vector of canonical coordinates qm and momenta pm.
Then, as usual, the beam (covariance) matrix is defined as

Σ =
〈
(z − 〈z〉) · (z − 〈z〉)�

〉
, (2)

where the brackets 〈 · 〉 denote an average over a distribu-
tion of the particles in the beam. By definition, the beam
matrix Σ is symmetric positive semidefinite and in the fol-
lowing we will restrict our considerations to the situation
when this matrix is nondegenerated and therefore positive
definite. For simplification of notations and without loss of
generality, we will also assume that the beam has vanishing
first-order moments, i.e.

〈
z
〉
= 0.

Let s be the independent variable and let T = T (τ) be
the nondegenerated matrix which propagates particle coor-
dinates from the state s = 0 to the state s = τ , i.e let

z(τ) = T z(0). (3)
Then from (2) and (3) it follows that the matrix Σ evolves
between these two states according to the congruence

Σ(τ) = T Σ(0)T�. (4)
Let us write the 2n× 2n matrix Σ in block-matrix form

Σ =

⎛
⎜⎝ Σ11 Σ12 · · · Σ1n

...
...

. . .
...

Σn1 Σn2 · · · Σnn

⎞
⎟⎠ , (5)

where the entries Σmk are 2 × 2 matrices. Because Σ is
symmetric, the blocks satisfy the relations Σmk = Σ�

km

for allm, k = 1, . . . , n. One says that the beam matrixΣ is
uncoupled if all its 2×2 blocksΣmk withm �= k are equal
to zero, and one says that the m-th degree of freedom in
the beam matrix Σ is decoupled from the others if Σmk =
Σkm = 0 for all k �= m.
If, similar to the matrix Σ, we will partition the matrix

T into submatrices Tmk, then one can rewrite the transport
equation (4) in the form of a system involving only 2 × 2
submatrices of the matrices Σ and T

Σmk(τ) =

n∑
l,p=1

Tml Σlp(0)T
�

kp, m, k = 1, . . . , n. (6)

In analogy with the matrix Σ, one says that the transport
matrix T is uncoupled if all its blocks Tmk withm �= k are
equal to zero, and one says that them-th degree of freedom
in the transport matrix T is decoupled from the others if
Tmk = Tkm = 0 for all k �= m.
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Figure 1: Shaded area shows all possible values of pro-
jected emittances ε1 and ε2 of a 4× 4 beam matrix Σ with
fixed eigenemittances εmin and εmax. If εmin = εmax,
then the shaded half-strip turns into a ray (half-line).

In the following we will assume that the beam transport
matrix T is symplectic, which is equivalent to say that it
satisfies the relations

T J2n T
� = T�J2n T = J2n (7)

where

J2n = diag

((
0 1

−1 0

)
, . . . ,

(
0 1
−1 0

)
︸ ︷︷ ︸

n

)
(8)

is the 2n× 2n symplectic unit matrix.
Using partitioning into 2×2 submatrices the two (equiv-

alent) conditions for the matrix T to be symplectic (7) can
be rewritten in the form of the following set of equations:

n∑
l=1

Tml J2 T
�

kl =
n∑

l=1

T�

lm J2 Tlk = δmk J2, (9)

wherem, k = 1, . . . , n and δmk is Kronecker’s delta.
Because for an arbitrary 2× 2 matrixX

X J2 X
� = X�J2 X = det(X) · J2, (10)

the equations (9) give us the following important identities
n∑

l=1

det(Tml) =
n∑

l=1

det(Tlm) = 1, (11)

which are valid for allm = 1, . . . , n.
Projected emittances εm are the rms phase space areas

covered by projections of the particle beam onto each co-
ordinate plane (qm, pm)

εm = det1/2(Σmm) =
√
〈q2m〉〈p

2
m〉 − 〈qmpm〉2. (12)

Let us assume that in the matrix T the m-th degree of
freedom is decoupled from the others. Then from equations
(6) one obtains that

Σmm(τ) = Tmm Σmm(0)T�

mm, (13)
and because due to (11) the submatrix Tmm has unit deter-
minant, we see that the projected emittance εm is conserved
during the beam transport independently if them-th degree
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Figure 2: Shaded area (with exception of axes ε1 = 0 and
ε2 = 0) shows all possible values of eigenemittances ε1 and
ε2 of a 4×4 beam matrixΣ with fixed projected emittances
εmin and εmax. If εmin = εmax, then two shaded triangles
merge into one.

of freedom in the matrix Σ(0) is decoupled from the others
or not.
Using symplecticity of the transport matrix T the con-

gruence (4) can be transformed into the following equiva-
lent form

(ΣJ2n)(τ) = T · (ΣJ2n)(0) · T
−1. (14)

From this form of the equation (4) we see that the eigenval-
ues of the matrixΣJ2n are invariants, because (14) is a sim-
ilarity transformation. The matrix ΣJ2n is nondegenerated
and is similar to the skew symmetric matrix Σ1/2J2n Σ

1/2

ΣJ2n = Σ1/2 · (Σ1/2J2n Σ
1/2) · Σ−1/2, (15)

which means that its spectrum is of the form
±iε1, . . . , ±iεn, (16)

where all εm > 0 and i is the imaginary unit. The quantities
εm are called eigenemittances and generalize the property
of the projected emittances to be invariants of uncoupled
beam transport to the fully coupled case [7].
The other approach to the concept of eigenemittances is

the way pointed out by Williamson’s theorem (see, for ex-
ample, references in [7]). This theorem tells us that one
can diagonalize any positive definite symmetric matrix Σ
by congruence using a symplectic matrixM

M ΣM� = D, (17)
and that the diagonal matrixD has the very simple form

D = diag(Λ,Λ), Λ = diag(ε1, . . . , εn) > 0, (18)
where the diagonal elements εm are the moduli of the
eigenvalues of the matrix ΣJ2n. The matrix M in (17)
is not unique, but the diagonal entries of the Williamson’s
normal form D (eigenemittances) are unique up to a re-
ordering.
It is clear that not only eigenemittances themselves, but

also an arbitrary function of them is an invariant. In partic-
ular, in the following we will make use of invariants
I2m = (−1)mtr

[
(ΣJ2n)

2m
]
/2 = ε2m

1
+ . . .+ ε2mn . (19)
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Figure 3: Schematic drawing of area allowed for the projected emittances of a 6× 6 beam matrix Σ with fixed eigenemit-
tances. There are four geometrically distinguishable situations which are shown from left to right and correspond to the
relations εmin = εmid = εmax, εmin < εmid = εmax, εmin = εmid < εmax, and εmin < εmid < εmax, respectively.

CHARACTERIZATION OF UNCOUPLED
BEAMMATRIX AND LOWER BOUNDS
FOR PROJECTED EMITTANCES

In this section we summarize what it is possible to say
about beam matrix and its emittances in the arbitrary de-
grees of freedom case. Note that not all presented relations
are new. For example, the inequality (21) is the well known
classical uncertainty principle.
Proposition 1 LetΣ be a 2n×2n beammatrix and let pos-
itive real numbers ε1, . . . , εn and ε1, . . . , εn be its eigene-
mittances and projected emittances, respectively. Then, the
following statements are equivalent:
a) The beam matrix Σ is uncoupled.
b) The set of projected emittances coincides with the set
of eigenemittances.

c) The product of projected emittances is equal to the
product of eigenemittances

ε1 ε2 . . . εn = ε1 ε2 . . . εn. (20)

Proposition 2 Let us denote by εmin and εmin the mini-
mums of the quantities ε1, . . . , εn and ε1, . . . , εn respec-
tively. Then, the following statements hold:

εmin ≥ εmin, (21)

ε1 + ε2 + . . .+ εn ≥ ε1 + ε2 + . . .+ εn, (22)

ε1 ε2 . . . εn ≥ ε1 ε2 . . . εn. (23)

TWO DEGREES OF FREEDOM
In the two degrees of freedom case the eigenemittances

can be calculated according to the explicit formula

ε1,2 =

√√√√I2
2
±

√(
I2
2

)2

− det(Σ), (24)

and the exact relations between them and projected emit-
tances are given by the following proposition:

Proposition 3 The positive real numbers ε1, ε2 and ε1,
ε2 can be realized as eigenemittances and projected emit-
tances of a 4× 4 beam matrix Σ if and only if the following
two inequalities hold:{

ε1 + ε2 ≥ ε1 + ε2

| ε1 − ε2| ≤ |ε1 − ε2|
(25)

The geometrical interpretation of the inequalities (25)
can be seen in Fig.1 and Fig.2.

THREE DEGREES OF FREEDOM
In the three degrees of freedom case the eigenemittances

can be found as positive roots of the bicubic equation
ε6 − I2 · ε

4 + (1/2)(I2
2
− I4) · ε

2 − det(Σ) = 0, (26)
and the exact relations between them and projected emit-
tances are given by the following proposition:

Proposition 4 The positive real numbers ε1, ε2, ε3 and
εmin ≤ εmid ≤ εmax can be realized as projected emit-
tances and eigenemittances of a 6 × 6 beam matrix Σ if
and only if the following inequalities hold:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε1 + ε2 − ε3 ≥ εmin + εmid − εmax

ε1 − ε2 + ε3 ≥ εmin + εmid − εmax

−ε1 + ε2 + ε3 ≥ εmin + εmid − εmax

ε1 + ε2 + ε3 ≥ εmin + εmid + εmax

εmin ≥ εmin

(27)

The geometrical interpretation of these inequalities for
the case when eigenemittances are fixed can be seen in
Fig.3.
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