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Abstract
Analytical formulae for estimating the dynamic aper-

tures of synchrotron particles has been well established.

Based on the standard mapping, we extend the analytical

formulae of dynamic aperture for off-momentum particles

in circular accelerator. And we compare the analytical re-

sults with the simulation ones in the BEPC-II positron ring

lattice under some conditions. What’s more, we give the

analytical formulae of dynamic aperture for FFAG in the

similar way.

INTRODUCTION
Dynamic aperture, which is defined as the maximum

phase-space amplitude when particles do not get lost as a

consequence of single-particle-dynamics effects, is one of

the major issues in accelerator design. The dynamic aper-

ture would be very large if the machine consists of only

nearly linear elements such as drift spaces and dipoles and

quadrupoles. Though the nonlinear forces from all kinds

of elements are very small, sometimes they are the murder-

s of circulating particles in the pipe. It is badly important

to estimate the dynamic aperture in a circular accelerator

design.

However, the dynamic aperture is typically determined

by numerical tracking till now. In [1], on the idea of com-

paring the single particle motion equations with standard

mapping by virtue of the KAM theory and Chirikov cri-

terion, it is the first time to estimate the dynamic aperture

analytically under some assumptions.

HAMILTONIAN FORMALISM
It is convenient to use Hamiltonian method to deal with

various nonlinear dynamical problems. In curvilinear co-

ordinates, we give the Hamiltonian in a circular accelerator

by using the arc length as the independent variable rather

than time:

Hs = −(1 + x/ρ)

(
P 2 − (px − eAx)

2 − (py − eAy)
2

)1/2

− eAs − eΦ (1)

where ρ is the radius of curvature and the torsion of the

closed orbit is everywhere zero, P is the total mechanical

momentum of the particle.

When the particle circulating in the accelerator ring is

off-momentum, the Hamiltonian would have something d-

ifferent from the reference one. One could rewrite the
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Hamiltonian[2] including only one sextupole in the x plane

H =
p2β
2
−(1−Δ)

(
Kx+ΔSD

)
x2
β

2
+(1−Δ)S

x3
β

6
(2)

where the quantity Δ ≡ (p − p0)/p0 measures the devia-

tion of the actual momentum from the momentum on the

reference orbit, S is a periodic function and it is typical-

ly piecewise constant in the regions where the correction

sextupoles are placed and zero elsewhere, D(s) is the dis-

persion function in horizontal direction.

ANALYTICAL FORMULAE WITH
DEPENDENT SEXTUPOLES

We assume that the contribution of nonlinear force from

sextupoles and other kinds of multipoles in a circular ac-

celerator can be made equivalent to a point sextupole and

multipole. To facilitate the analytical treatment of the com-

plicated problem, we assume that all the nonlinear forces

just originate from sextupoles(no screw terms). The one

dimensional Hamiltonian in action-angle variables for on-

momentum particles is:

H =
2πν

L
J+

∑
i,k

[2Jβx(si)]
3/2

3
Sicos

3 Ψiδ(s−kL) (3)

where L is the circumference of the ring, βx(si) and Si

represent the beta function and sextupole strength at the po-

sition si respectively. And Ψi = Ψ+ΔΨi, J and Ψ are the

action-angle variables at the reference position, ΔΨi is the

phase advance of the sextupole at the position si away from

the reference position. On the basis of the above Hamilto-

nian, the dynamic equations of single particle in a circular

accelerator in the canonical action-angle variables are:

dJ

ds
= −

∑
i,k

(2J)3/2

3
Ai

d

dΨ
cos3 Ψiδ(s− kL) (4)

dΨ

ds
=

2πν

L
+
√
2J

∑
i,k

Ai cos
3 Ψiδ(s− kL) (5)

Here we use Ai = βx(si)
3/2

Si to make the equations com-

pact and it will be very convenient for the following deriva-

tion.

Next, in order to analyse the possibilities of stochasticity,

we change the differential equations eq.(4) and eq.(5) in-

to difference ones[3][4], which have some distinguish with

that in [1], because here we put all the nonlinear effect-

s as a whole one. By using the Fourier analytical method

to cos3 Ψ and combining with trigonometric relation, one
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could have different equation associated with J and Ψ:

J = J +
(2J)3/2

4

√
B2 + C2 sin(3Ψ) (6)

Ψ = Ψ+
1

4

√
2

J

√
B2 + C2J (7)

where B =
∑

i Ai cos 3ΔΨi and C =
∑

i Ai sin 3ΔΨi.
Here we assume the cosine term cos 3Ψ keep constant to 1.

Till now, we have made the equations be the same pattern

with the so-called standard mapping, which is expressed as

I = I +K0 sin θ (8)

θ = θ + I (9)

Comparing the eq.(6) and eq.(7) with standard mapping,

one could easily reflect that K0 = 3
4J(B

2+C2). By virtue

of the Chirikov criterion[3], it is well known that resonance

overlapping occurs when |K0| ≥ 0.97164, which leads to

particles’ stochastic motions and diffusion processes[5]. So

from 3
4J(B

2 + C2) ≤ K0 ∼ 1, one gets the maximum J
corresponding to m/3 resonance:

J ≤ Jmax =
4

3(B2 + C2)
(10)

Then the dynamic aperture in the x plane is

Adyna,sext,x =
√
2Jmaxβx(s) =

√
8βx(s)

3(B2 + C2)
(11)

eq.(11) describes the total dynamic aperture determined

just by sextupoles especially concerning with dependent in-

fluence.

DYNAMIC APERTURE WITH
MOMENTUM DEVIATION

Now we would start our journey to search the analytical

formulae of dynamic aperture for off-momentum particles.

To start with we consider the horizontal motion of the ref-

erence particle in the horizontal plane within a series of

sextupoles, so one gets the new Hamiltonian as:

H =
p2β
2
−(1−Δ)

(
Kx+Δ

∑
i

SD

)
x2
β

2
+(1−Δ)

∑
i

S
x3
β

6

(12)

The Hamiltonian could be separated into two parts, i.e. the

linear part associated with the former two terms and the

nonlinear part associated with the last term. Compared

with solution to H = 1
2p

2 + K(s)
2 x2, one could get the

solution to H =
p2
β

2 − (1−Δ)(Kx +
∑

i SΔD)
x2
β

2 , which

would have the form:

xβ =

√
2Jβ̃x(s) cos

(
Ψ− 2πν

L
s+

∫ s

0

ds′

β̃x(s′)

)
(13)

where J and Ψ are the relevant action-angle variables. And

the β̃x(s) is a new beta function connected with Δ, which

could be calculated from

β̃x(s) = βx(s)

(
1+

1

2 sin(2πν)

∮
βx(t)k cosαdt

)
(14)

where k = ΔKx(t)−(1−Δ)Δ
∑

i D(t)S(t) is something

like quadrupole field error, α = 2|Ψ(t) − Ψ(s)| − 2πν.

One may regard β̃x(s) as the equivalent beta function tast-

ed by the off-momentum particles. Naturally, in order to

calculate the integral more accurate in a convenient way,

one could make the quadrupole and sextupole equivalent to

delta function with finite effect length, e.g. it is reasonable

to replace the S(t) by S(si)Lsiδ(si − t), where Lsi is the

effect length of the sextupole at the position si.
Taking the eq.(13) into eq.(12), the new Hamiltonian ex-

pressed in action-angle variables is:

H =
2πν

L
J+(1−Δ)

∑
i,k

[2Jβ̃x(si)]
3/2

3
Sicos

3 Ψiδ(s−kL)

(15)

The above Hamiltonian just has a difference beta function

with that in eq.(3), we get the relationship between dy-

namic aperture of on-momentum particles and that of off-

momentum ones easily:

Adyna,sext,Δ =
1

1−Δ

√
8β̃x(s)

3(B2 + C2)
= Ω×Adyna,sext

(16)

Here we call Ω the modulation factor. It is clear to tell

that the dynamic aperture for off-momentum particles is

modulated by both the momentum deviation and the linear

lattice’s characteristic.

COMPARED WITH SIMULATION
RESULTS

Now we would apply eq.(11) and eq.(16) to a real ma-

chine. Here we choose the BEPC-II positron ring lattice as

the object to compare the analytical results with simulation

ones by using SAD code.

The BEPC-II, whose design energy is 1.89GeV, has a

circumference of 237m long. And the positron ring lattice

consists of 36 sextupoles in four families standing in sym-

metry positions.

Here the nonlinear forces are just from sextupoles. We

set the tune be (6.5080, 5.5699) and choose the interaction

point as the reference point. The results between the simu-

lation results and our analytical estimation results are show

in Figure 1.

It is clear to see that the analytical estimation result is

quite good with simulation ones when the momentum de-

viation is quite small. Even though the difference between

the two lines is a little unsatisfactory at very large mo-

mentum deviations, the analytical one indicates the right

trends of dynamic aperture along with momentum devia-

tion. From the picture, it is easy to see that the dynamic
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aperture may not be the largest for on-momentum parti-

cles, and the dynamic aperture would decrease when the

momentum deviation is too large.

Figure 1: Results of horizontal dynamical aperture in

both simulation method and analytical method at BEPC-II

positron ring.

APPLICATION IN FFAG
FFAG is fixed field alternating gradient accelerator, and

there are two types of FFAG, i.e. scaling FFAG and non-

scaling FFAG. The scaling ones were proposed by Ohkawa,

Kolomersky, Symon and Kerst in 1953[8] while the non-

scaling ones were put forward by Mills and Johnstone in

1997[9] for dealing with the rapid acceleration (≤ 20 turns)

for muons.

For a linear non-scaling FFAG accelerator, the field is

combined dipole with quadrupole. Usually, sextupoles are

needed to correct the chromaticity, so eq.(11) would be

suitable to estimate the dynamic aperture.

However, scaling FFAG accelerators consist of nonlinear

fields, which is required as[10]

B(r) = B0(r0)

(
r

r0

)k

(17)

where B0(r0) is the reference field strength at r0 and k is

called the field index. Gradient is determined by focusing

condition, not by isochronous condition. Here we consider

a scaling radial FFAG as an example, which consists of N

period of DFD structure. We assume that the F and D mag-

nets have the same index number k with opposite magnet

field direction. Expand the field as follows:

B(r) = B0(r0)

[
1+k

Δr

r0
+
k(k − 1)

2

(
Δr

r0

)2

+···
]

(18)

We take the lowest nonlinear term into consideration and

assume the nonlinear components act as delta functions.

As the nonlinear effects are everywhere along the magnet

in N families, the nonlinear force should have an influence

with each other. So the Hamiltonian should be similar to

eq.(3) just by replacing the sextupoles’ strengths with new

equivalent sextupoles’ strengths:

H =
2πν

L
J+

∑
i,k

[2Jβx(si)]
3/2

3

k(k − 1)

2ρr20
cos3 Ψiδ(s−kL)

(19)

Repeat the process of getting dynamic equations in action-

angle variables and comparing them with standard map-

ping, the dynamic aperture due to third-order effect is eas-

ily derived:

Adyna,third,x =
2ρr20

k(k − 1)

√
8βx(s)

3(B̃2 + C̃2)
(20)

where in the new formulae B̃ =
∑

i β
3/2
x (si) cos 3ΔΨi

and C̃ =
∑

i β
3/2
x (si) sin 3ΔΨi. What’s more, according

to eq.(16), the modulation factor Ω will be useful to de-

scribe the dynamic aperture with momentum deviation:

Adyna,third,Δ,x = Ω×Adyna,third,x (21)

At the same time, one should take the high order effects

into consideration to get more accurate dynamic aperture

estimation for scaling FFAGs.

CONCLUSION
Based on the standard mapping, we extend a new formu-

la for estimating dynamic aperture just caused by depen-

dent sextupoles within momentum deviation. The result is

quite good in BEPC-II positron ring. Also, we apply this

method in scaling FFAG especially and give the analytical

formula in third order.
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