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Abstract
The HL-LHC project relies on large aperture

quadrupoles which are compatible with the very large
beam sizes in the inner triplets resulting from the strong
reduction of beta*. As a result the beam is much more
sensitive to non-linear perturbations in this region, such
as those induced by the fringe elds of the low-beta
quadrupoles. The spatial extension of these fringe elds
increases as well more or less linearly with the coil
aperture, which is an additional motivation to analyse this
aspect in detail in the framework of the High Luminosity
LHC design study. This paper will quantify this effect by
direct analytical estimates using rst order Hamiltonian
perturbation theory, applied to quadrupole and dipole
fringe elds. Both detuning with amplitude and chromatic
effects will be considered. A numerical estimate for
the proposed triplet quadrupoles will be presented, and
the implementation of special symplectic integrators in
SixTrack for tracking simulations outlined.

INTRODUCTION
The proposed High-luminosity upgrade of the LHC (HL-

LHC) is based, among other systems, on new large aper-
ture superconducting magnets [1]. Indeed, the triplet
quadrupoles are planned to have 150 mm coil diameter [2]
to be compared with 70 mm for the current triplet mag-
nets [3]. Similarly, the new D1 superconducting separa-
tion dipole would feature 160 mm coil diameter [2] against
80 mm now [3]1. Almost a factor of two increase is applied
to the new magnets. This fact calls for a careful analysis of
the impact of stray elds on the particle’s dynamics.
The impact of the linear part of the stray elds in the

triplet’s quadrupoles has been addressed in Ref. [4]. Nev-
ertheless, also the non-linear effects may play an important
role and should be evaluated. This topic is the focus of
this paper. The starting point is the analytical evaluation
of the detuning with amplitude and chromatic effects in-
duced by the fringe elds of the large aperture quadrupoles
and dipoles. Then, in a second step, the long-term beam
dynamics should be analysed taking into account this ad-
ditional source of potential harmful effects. Such a step
requires numerical simulation tools to be implemented in

∗The HiLumi LHC Design Study is included in the HL-LHC project
and is partly funded by the European Commission within the Framework
Programme 7 Capacities Speci c Programme, Grant Agreement 284404.

1It is worth mentioning that in the nominal layout the D1 separation
dipole in the high luminosity insertions IR1 and 5 is made of normal con-
ducting magnets.

the SixTrack code [5], which is the workhorse for beam
dynamics simulations at CERN.

ANALYTICAL CONSIDERATIONS
Quadrupoles
According to the analysis presented in Refs. [6, 7, 8], the

vector potential for a eld with quadrupolar symmetry can
be expressed as
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1

2
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with coef cients aik satisfying the relations:

aik =
2i+ 1

2k + 1
aki , and if ′ stands for the s-derivative

a′′i−1,k−1
+ 2i(2i− 1)ai,k−1 + 2k(2k + 1)ai−1,k = 0 .

The expansion of the vector potential reads
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and the Hamiltonian governing the particle’s motion is
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where Px,y are the generalised momenta, normalised with
respect to p = p0(1 + δ), p0 being the design particle’s
momentum. A series expansion in the co-ordinates and δ =
Δp/p0 gives for H̄ = H + 1
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The Hamiltonian provides the required information about
the detuning with amplitude, assuming that the original
variables are transformed to action-angle Jz, φz , where z
stands for x, y, so that the Hamiltonian averaged over the
angles reads
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= −1 +
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The tune shift is the computed as
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Each term αz1z2 , z1, z2 = x, y consists of two parts, one
depending on the optics, the so-called kinematic term, and
one depending on s-derivatives of K1, the latter being the
direct effect of the fringe eld. Using β∗

x for the value of the
beta-function at the interaction point (IP), L for quadrupole
length, and L∗ for the length of the drift from the IP to
quadrupole, then in such a drift βx(s) = β∗

x + s2/β∗

x,
αx(s) = −s/β∗

x, (1 + αx(s)
2)/βx(s) = 1/β∗

x. Then the
kinematic terms in the drift are given by
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In a very similar way it is possible to derive the fringe
eld contribution to chromaticity starting from its very def-
inition and assuming that dispersion can be neglected, ob-
taining

∂Δνx
∂δ

= ξx + ξxxJx + ξxyJy ,

∂Δνy
∂δ

= ξy + ξyyJy + ξyxJx ,

where the coef cients ξz, ξz1z2 are given by
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It is clear that the computation of the contribution of
the fringe elds effect implies specifying a model for the
s-dependence of K1, and speci c examples are given in
Refs. [9, 10, 11, 12]. The results of numerical computa-
tions will be presented in a next section.

Dipoles
The computations carried out previously can be extended

to the case of dipolar fringe elds. Assuming co-ordinates
ui = {x, s, y}, a basis �a1 = �ex, �a2 = (1+Kx)�es, �a3 = �ey

and K = −
eB0

p0c
, then the vector potential reads as A1 =

Ax, A2 = (1 +Kx)As, A3 = Ay and its expansion as
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In this case the Hamiltonian can be expanded as
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if the dependence on δ is neglected. The tune shift can be
derived also for this case and the result reads
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The kinetic part of the coef cients αz1z2 is the same for
dipoles and quadrupoles, while the proper fringe eld terms
are different. Furthermore, the symmetry between the H-
and V-plane that is apparent in the fringe eld contributions
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Table 1: Contributions to the amplitude detuning and chromaticity by the triplet quadrupoles of IP5
Name αxx αxy = αyx αyy ξxx ξxy = ξyx ξyy

MQXC.3L5 3.7 · 103 8.8 · 103 6.7 · 103 −3.6 · 103 −8.7 · 103 −6.5 · 103

MQXC.B2L5 6.3 · 103 −10 · 103 3.1 · 103 −6.2 · 103 10 · 103 −2.8 · 103

MQXC.A2L5 4.1 · 103 7 · 102 5.6 · 102 −3.7 · 103 −7 · 102 −5.6 · 102

MQXC.1L5 2.9 · 103 −1.7 · 103 4 · 102 −2.5 · 103 1.7 · 103 −4 · 102

MQXC.1R5 4 · 102 1.7 · 103 2.9 · 103 −4 · 102 −1.7 · 103 −2.5 · 103

MQXC.A2R5 5 · 102 7 · 102 4.1 · 103 −5 · 102 −7 · 102 −3.8 · 103

MQXC.B2R5 3.1 · 103 10 · 103 6.3 · 103 −2.8 · 103 −10 · 103 −6.2 · 103

MQXC.3R5 6.7 · 103 −8.6 · 103 3.7 · 103 −6.5 · 103 8.7 · 103 −3.6 · 103

Total 2.8 · 104 1.6 · 103 2.8 · 104 −2.6 · 104 −1.4 · 103 −3.1 · 104

in the quadrupoles is broken for the dipole case. A number
of considerations can be made. The underlying assump-
tion for the computations presented here is that neither the
beam trajectory, nor the beam optics is affected, at least
to rst order, by the stray elds as this allows using, e.g.,
the unperturbed optical parameters for the estimate of the
stray elds effects for quadrupoles. As the extension of
the fringe elds is proportional to the aperture it is justi-
ed to assume that larger aperture magnets can introduce a
stronger perturbation of the beam dynamics. As the value
of the beta-functions is considerably different at the loca

-

tion of the triplet quadrupoles and the separation dipole, the
impact of the fringe elds effects is rather different in the
two cases. Therefore, in the next section the focus will be
on the numerical evaluation of the fringe elds effects for
quadrupoles. Finally, integration by parts could be used to
convert derivative of K,K1 into derivatives of the optical
parameters.

NUMERICAL CONSIDERATIONS
The formalism developed in the previous sections has

been applied by considering magnet measurements of stray
elds in models of triplet quadupoles [13] shown in Fig. 1.
A special layout for the HL-LHC has been used, featuring
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Figure 1: Measured gradient and s-derivatives vs. s.

round optics with β∗ = 10 cm. By assuming εx = εy =
5 × 10−4 μm and action with amplitude of one sigma is
Jx = εx/2 = 2.5×10−10 m. The contribution of the kine-
matic part of the αz1z2 terms is negligible, ranging from
about 1.4× 102 m−1 to 4.6× 101 m−1 for the drift and the
quadrupole, respectively. The total effect is summarised in
Table 1.

CONCLUSIONS AND OUTLOOK
Although the effect of the fringe elds is small, never-

theless it cannot be completely neglected. This means that
the effect on the long-term beam dynamics should be evalu-
ated via tracking simulations. Currently SixTrack does not
provide the tools to perform symplectic integration of stray
elds. Therefore, a new implementation is being consid-
ered, based on the approach presented in Refs. [14, 15] and
a preliminary analysis has been made [16].
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