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Abstract
In recent studies, the evolution of the dynamic aperture

with time has been fitted with a simple scaling law based on
a limited number of free parameters. In this paper, different
approaches to improve the numerical stability of the fit are
presented, together with a new functional form.

INTRODUCTION
The time-dependence of the dynamic aperture (DA), i.e.

the region of phase space that is stable over a fixed number
of turns, has been proposed [1, 2] to satisfy

D(N) = D∞ +
b

[log(N)]
κ , (1)

where N represents the turn number and κ,D∞, b are free
parameters. Such a scaling is compatible with fundamental
theorems in non-linear dynamics, such as the KAM [3] and
Nekhoroshev [4, 5] theorems. Furthermore, this scaling has
been used to model the time-evolution of beam losses in
hadron machines without [6] and including beam-beam ef-
fects in the weak-strong regime [7], as well as the evolution
of the luminosity in the LHC [8].
The data used are obtained from the SixTrack code [9],

applying the standard protocol for tracking a LHC lattice
representing the top energy configuration, including mag-
netic errors, and beam-beam effects in the weak-strong
regime (see Ref. [7] for more details). Sixty realisations
(called seeds below) of the magnetic errors have been con-
sidered, with a bunch charge of 0.02 × 1011 protons.

EVALUATION OF FIT PARAMETERS
Obtaining Values for κ

Difference Ratio Upon taking a difference ratio at turn
times N1, N2, N3 the parameters D∞ and b are eliminated

D(N1) − D(N2)

D(N1) − D(N3)
=

1 − [log (N1)/log (N2)]
κ

1 − [log (N1)/log (N3]
κ . (2)

For fixed N1 the LHS of Eq. (2) is then evaluated for all
combinations N2, N3 > N1, N2 �= N3 and fitted to the
RHS of Eq. (2). Varying N1 yields a curve κ = κ(N1)
and a corresponding curve for the residuals of the fits. Two
different approaches are then used to obtain a value for κ.

1. A model κ = const. is fitted through κ = κ(N1)
including an error-weighting (labelled as method 3).

∗The HiLumi LHC Design Study is included in the High Luminosity
LHC project and is partly funded by the European Commission within the
Framework Programme 7 Capacities Specific Programme, Grant Agree-
ment 284404.

2. The value of κ = κ(N1) is chosen that gives the
smallest residuals in the fit of the LHS of Eq. (2) (la-
belled as method 2).

Direct Fit with Varying κ Fixing the value of κ, one
can evaluate (1) with onlyD∞ and b as free parameters. By
varying κ the residuals of the fits are obtained as a function
of κ [6], and the value of κ is chosen that minimises the
residuals.

Additional Methods for Evaluating D∞ and b

Once a value for κ is determined, two more ways of ob-
taining D∞ and b are investigated.

Obtaining b by Differences in DA Values Taking the
difference in DA values at turn numbers N1 andN2 yields:

D(N1)−D(N2) = b
{

[log(N1)]
−κ

− [log(N2)]
−κ

}
(3)

A value for b can be computed in the following two ways:

1. Evaluate Eq. (3) for all N1 �= N2 and compute the
error-weighted average (labelled as method β).

2. Fit the RHS of Eq. (3) directly to the LHS withN1 and
N2 as the independent variables and b as the fitting
parameter (labelled as method γ).

Obtaining D∞ by Ratio of DA Values Analogous to
the procedure for b above, consider the ratio:

D(N1)

D(N2)
=

D∞/b − [log(N1)]
−κ

D∞/b − [log(N2)]
−κ

, (4)

from which the value of D∞ can be derived as a function
of b, N1, N2. Two approaches of determining D∞ are:

1. Replace b in the expression of D∞ from (4) by the
corresponding solution of (3) to yield a value for
D∞(N1, N2), and compute the error-weighted aver-
age (labelled as method b).

2. Fit Eq. (1) to the data with κ and b fixed and D∞ the
fitting parameter (labelled as method c).

RESULTS
κ Values from Different Methods
Fig. 1 shows the distributions of the values of κ for each

method. There is a general trend for κ to lie in an inter-
val spanning a factor of at least two around κ = −2, with
outliers. While all methods yield similar results, method 1
produces a systematically slightly different value of κ com-
pared to the others.
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Figure 1: Distributions of κ values for different methods.

D∞ Values from Different Methods

The results for D∞ from the different methods are plot-
ted in Fig. 2. Generally the different methods seem to give
results of a similar order of magnitude, with typical varia-
tions being a few percent only. Nonetheless, the associated
errors are increasing in size when moving frommethod a to
method b and c. One can conclude that all the methods for
determining κ andD∞ generate compatible results. More-
over, D∞ can be determined in a rather robust way inde-
pendently of the details of the fit procedure.
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Figure 2: Distributions of D∞ values and distributions
from different methods.

b Values from Different Methods
The analysis of the distributions of b for the various

methods (see Fig. 3) seems to indicate that the critical pa-
rameter is the way κ is determined. In fact, method 1 pro-
vides the narrower distribution even though all methods are
affected by huge tails towards more negative values of b.
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Figure 3: Distributions of b values from different methods.

Agreement Between Data and Fitting Methods
In Fig. 4 the DA values from the data are compared to

the different fitting methods for a typical seed. The figure
shows that the various methods yield comparable results
for the time dependence of the DA values, which are com-
patible with the data.
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Figure 4: Numerical data and fit curves for seed 1.
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ANALYSIS OF DIFFERENT MODELS
The analysis reported so far indicates that D∞ is rather

stable, while κ and b are varying much more, in particular
b. Moreover, as both κ and b are part of the logarithmic
dependence of DA a sort of compensation between them
cannot be excluded, thus inducing large fluctuations over
the seeds. Of course, there could be also the presence of a
residual dependence of b, e.g., on κ.
In Fig. 5 the values of log |b| are plotted as a function

of κ, showing a clear linear correlation. This feature is
independent on the fit method.

�3.5 �3.0 �2.5 �2.0 �1.5
�10

�8

�6

�4

�2

Κ

lo
g�
b�

Line:1.55007 	 2.90134 x
b from method 1,Α

Figure 5: log |b| as a function of κ from method 1, α.

Therefore, one concludes that the relationship between b
and κ is of the form:

log |b| = log |b0| + b1κ b = b0e
b1κ. (5)

The weighted average of the fit parameters b0, b1 from
various methods is given by log |b0| = 1.71 ± 0.05 and
b1 = 2.97 ± 0.02. Therefore, the DA scaling model might
be better described in the following form:

D(N) = D∞ +
b0[

log (Ne
−b1

)
]κ . (6)

This new model has been applied to the same data set. As-
suming b1 = 3 one obtains the results shown in Fig. 6 for
the parameters κ,D and b0, respectively. The new model
yields results for κ andD∞ that are in good agreement with
the old one, but that the value of b0 is much more stable
than the old fitting parameter b.

CONCLUSIONS
A detailed analysis of various approaches to fit the pro-

posed scaling law (1) has been performed using a large
number of numerical simulations. The original method
used in Ref. [6] seems to perform better that the others. The
analysis substantiates the validity of the dynamic aperture
scaling law, but suggests a more suitable formulation:

D(N) = D∞ +
b0[

log (Ne
−b1

)
]κ . (7)

For this new form the parameters D∞ and κ show a sta-
ble behaviour in agreement with the initial formulation of
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Figure 6: Distributions: κ,D∞, b0 for new and old models.

the DA scaling model, whereas the new parameter b0 ex-
hibits a much more stable behaviour than b in the form (1).
In the applied fitting method the parameter b1 was given the
value 3, which was obtained from linear fits of log |b| as a
function of κ. Further investigation is necessary in which
this new revised form of the DA scaling law is applied to
more data sets to determine whether the parameter b1 can
be assumed to be a constant.
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