ANALYSIS OF POSSIBLE FUNCTIONAL FORMS OF THE SCALING LAW FOR DYNAMIC APERTURE AS A FUNCTION OF TIME*

M. Giovannozzi, F. Lang, R. De Maria, CERN, Geneva, Switzerland

Abstract

In recent studies, the evolution of the dynamic aperture with time has been fitted with a simple scaling law based on a limited number of free parameters. In this paper, different approaches to improve the numerical stability of the fit are presented, together with a new functional form.

INTRODUCTION

The time-dependence of the dynamic aperture (DA), i.e. the region of phase space that is stable over a fixed number of turns, has been proposed [1, 2] to satisfy

$$D(N) = D_{\infty} + \frac{b}{\left[\log(N)\right]^{\kappa}},\tag{1}$$

where N represents the turn number and κ , D_{∞} , b are free parameters. Such a scaling is compatible with fundamental theorems in non-linear dynamics, such as the KAM [3] and Nekhoroshev [4, 5] theorems. Furthermore, this scaling has been used to model the time-evolution of beam losses in hadron machines without [6] and including beam-beam effects in the weak-strong regime [7], as well as the evolution of the luminosity in the LHC [8].

The data used are obtained from the SixTrack code [9], applying the standard protocol for tracking a LHC lattice representing the top energy configuration, including magnetic errors, and beam-beam effects in the weak-strong regime (see Ref. [7] for more details). Sixty realisations (called *seeds* below) of the magnetic errors have been considered, with a bunch charge of 0.02×10^{11} protons.

EVALUATION OF FIT PARAMETERS

Obtaining Values for κ

Difference Ratio Upon taking a difference ratio at turn times N_1 , N_2 , N_3 the parameters D_{∞} and b are eliminated

$$\frac{D(N_1) - D(N_2)}{D(N_1) - D(N_3)} = \frac{1 - \left[\log(N_1) / \log(N_2)\right]^{\kappa}}{1 - \left[\log(N_1) / \log(N_3)\right]^{\kappa}}.$$
 (2)

For fixed N_1 the LHS of Eq. (2) is then evaluated for all combinations $N_2, N_3 > N_1, N_2 \neq N_3$ and fitted to the RHS of Eq. (2). Varying N_1 yields a curve $\kappa = \kappa(N_1)$ and a corresponding curve for the residuals of the fits. Two different approaches are then used to obtain a value for κ .

1. A model $\kappa = const.$ is fitted through $\kappa = \kappa(N_1)$ including an error-weighting (labelled as method 3).

ISBN 978-3-95450-122-9

2. The value of $\kappa = \kappa(N_1)$ is chosen that gives the smallest residuals in the fit of the LHS of Eq. (2) (labelled as method 2).

Direct Fit with Varying κ Fixing the value of κ , one can evaluate (1) with only D_{∞} and b as free parameters. By varying κ the residuals of the fits are obtained as a function of κ [6], and the value of κ is chosen that minimises the residuals.

Additional Methods for Evaluating D_{∞} and b

Once a value for κ is determined, two more ways of obtaining D_{∞} and b are investigated.

Obtaining b by **Differences in DA Values** Taking the difference in DA values at turn numbers N_1 and N_2 yields:

$$D(N_1) - D(N_2) = b \left\{ \left[\log(N_1) \right]^{-\kappa} - \left[\log(N_2) \right]^{-\kappa} \right\}$$
(3)

A value for *b* can be computed in the following two ways:

- 1. Evaluate Eq. (3) for all $N_1 \neq N_2$ and compute the error-weighted average (labelled as method β).
- 2. Fit the RHS of Eq. (3) directly to the LHS with N_1 and N_2 as the independent variables and b as the fitting parameter (labelled as method γ).

Obtaining D_{∞} by **Ratio of DA Values** Analogous to the procedure for *b* above, consider the ratio:

$$\frac{D(N_1)}{D(N_2)} = \frac{D_{\infty}/b - [\log(N_1)]^{-\kappa}}{D_{\infty}/b - [\log(N_2)]^{-\kappa}},$$
(4)

from which the value of D_{∞} can be derived as a function of b, N_1, N_2 . Two approaches of determining D_{∞} are:

- 1. Replace b in the expression of D_{∞} from (4) by the corresponding solution of (3) to yield a value for $D_{\infty}(N_1, N_2)$, and compute the error-weighted average (labelled as method b).
- 2. Fit Eq. (1) to the data with κ and b fixed and D_{∞} the fitting parameter (labelled as method c).

RESULTS

κ Values from Different Methods

Fig. 1 shows the distributions of the values of κ for each method. There is a general trend for κ to lie in an interval spanning a factor of at least two around $\kappa = -2$, with outliers. While all methods yield similar results, method 1 produces a systematically slightly different value of κ compared to the others.

D02 Non-linear Dynamics - Resonances, Tracking, Higher Order

^{*} The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.

Figure 1: Distributions of κ values for different methods.

D_{∞} Values from Different Methods

The results for D_{∞} from the different methods are plotted in Fig. 2. Generally the different methods seem to give results of a similar order of magnitude, with typical variations being a few percent only. Nonetheless, the associated errors are increasing in size when moving from method a to method b and c. One can conclude that all the methods for determining κ and D_{∞} generate compatible results. Moreover, D_{∞} can be determined in a rather robust way independently of the details of the fit procedure.

Figure 2: Distributions of D_{∞} values and distributions from different methods.

b Values from Different Methods

The analysis of the distributions of b for the various methods (see Fig. 3) seems to indicate that the critical parameter is the way κ is determined. In fact, method 1 provides the narrower distribution even though all methods are affected by huge tails towards more negative values of b.

Figure 3: Distributions of b values from different methods

Agreement Between Data and Fitting Methods

In Fig. 4 the DA values from the data are compared to the different fitting methods for a typical seed. The figure shows that the various methods yield comparable results for the time dependence of the DA values, which are compatible with the data.

05 Beam Dynamics and Electromagnetic Fields

D02 Non-linear Dynamics - Resonances, Tracking, Higher Order

— cc Creative Commons Attribution 3.0

ANALYSIS OF DIFFERENT MODELS

The analysis reported so far indicates that D_{∞} is rather stable, while κ and b are varying much more, in particular b. Moreover, as both κ and b are part of the logarithmic dependence of DA a sort of compensation between them cannot be excluded, thus inducing large fluctuations over the seeds. Of course, there could be also the presence of a residual dependence of b, e.g., on κ .

In Fig. 5 the values of $\log |b|$ are plotted as a function of κ , showing a clear linear correlation. This feature is independent on the fit method.

Figure 5: $\log |b|$ as a function of κ from method 1, α .

Therefore, one concludes that the relationship between b and κ is of the form:

$$\log|b| = \log|b_0| + b_1\kappa \qquad b = b_0 e^{b_1\kappa}.$$
 (5)

The weighted average of the fit parameters b_0 , b_1 from various methods is given by $\log |b_0| = 1.71 \pm 0.05$ and $b_1 = 2.97 \pm 0.02$. Therefore, the DA scaling model might be better described in the following form:

$$D(N) = D_{\infty} + \frac{b_0}{\left[\log\left(N^{e^{-b_1}}\right)\right]^{\kappa}}.$$
 (6)

This new model has been applied to the same data set. Assuming $b_1 = 3$ one obtains the results shown in Fig. 6 for the parameters κ , D and b_0 , respectively. The new model yields results for κ and D_{∞} that are in good agreement with the old one, but that the value of b_0 is much more stable than the old fitting parameter b.

CONCLUSIONS

A detailed analysis of various approaches to fit the proposed scaling law (1) has been performed using a large number of numerical simulations. The original method used in Ref. [6] seems to perform better that the others. The analysis substantiates the validity of the dynamic aperture scaling law, but suggests a more suitable formulation:

$$D(N) = D_{\infty} + \frac{b_0}{\left[\log\left(N^{e^{-b_1}}\right)\right]^{\kappa}}.$$
 (7)

For this new form the parameters D_{∞} and κ show a stable behaviour in agreement with the initial formulation of

ISBN 978-3-95450-122-9

Figure 6: Distributions: κ , D_{∞} , b_0 for new and old models.

the DA scaling model, whereas the new parameter b_0 exhibits a much more stable behaviour than b in the form (1). In the applied fitting method the parameter b_1 was given the value 3, which was obtained from linear fits of $\log |b|$ as a function of κ . Further investigation is necessary in which this new revised form of the DA scaling law is applied to more data sets to determine whether the parameter b_1 can be assumed to be a constant.

REFERENCES

- M. Giovannozzi, W. Scandale, E. Todesco, Part. Accel. 56 195, 1996.
- [2] M. Giovannozzi, W. Scandale, E. Todesco, Phys. Rev. E 57 3432, 1998.
- [3] C. L. Siegel and J. Moser, Lectures in celestial mechanics, Berlin Springer Verlag, 1971.
- [4] N. Nekhoroshev, Russ. Math. Surv. 32 1, 1977.
- [5] A. Bazzani, S. Marmi, G. Turchetti, Cel. Mech. 47 333, 1990.
- [6] M. Giovannozzi, Phys. Rev. ST Accel. Beams 15 024001, 2012.
- [7] M. Giovannozzi, E. Laface, TUPPC086, IPAC12 proceedings.
- [8] M. Giovannozzi, C. Yu, TUPPC078, IPAC12 proceedings.
- [9] F. Schmidt, CERN/SL/94-56 (AP), Update January 2012.

05 Beam Dynamics and Electromagnetic Fields

ີ **2620**

uu

reative

2013 by

0

D02 Non-linear Dynamics - Resonances, Tracking, Higher Order