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Abstract

The present theory to obtain higher order terms of beam
dynamics is mostly through Taylor expansion and differ-
entiation, for example, the Lie transformation. When 3-
dimensional Hamiltonian is being considered the operation
of integration becomes necessary. In this paper we present
a new integration theory, which leads to transfer maps for
common accelerator elements based on 3-d Hamiltonians.
Some immediate physics insight can be gained from this
theory, for example, the kick-map theory which is used for
insertion device design and modeling, is a first-order ap-
proximation in our approach.

INTRODUCTION
The basic idea of Lie Series is as follows. For any phase

space coordinate z in a time-independent Hamiltonian sys-
tem, where z stands for p or q, the canonical momentum
and the coordinate, the differentiation can be written as
d
dtz = dp

dt
∂
∂pz + dq

dt
∂
∂q z = −∂H

∂q
∂
∂pz + ∂H

∂p
∂
∂q z where

the Hamilton’s equations have been applied. If we use the
Dragt notation d

dtz = − : H : z, then the solution can be
expressed as z(t) = e−t:H:z(t = 0).

Unfortunately the number of terms increases exponen-
tially with order of t in the expansion of e−t:H:; there-
fore for any practical calculations one has to truncate at
a certain order. Several truncation methods have been pro-
posed to perserve the symplectic Hamiltonian flow. One
approach is to factorize the Hamiltonian into order by or-
der generators [1]: e:H:L = e:H2:Le:H3:Le:H4:L · · ·, where
H is the original Hamiltonian and Hi is an ith order (only)
polynomial. The above factorization guarantees symplec-
ticity up to a particular order in z, provided the Hamil-
tonian has no first-order terms. The new problem is that
e:Hi:L is an infinite series, except for e:H2:L, of which one
can always find a closed form. To truncate e:Hi:L a re-
factorization approach is proposed to convert the higher
order generators into integrable polynomials, for example
e:H3:Le:H4:L = e:h1:Le:h2:L · · · e:h7:L, where hi are inte-
grable polynomials and the coefficients are determined by
H3 and H4 [2]. As pointed out in the same reference, the
discarded terms are O(Lzn) (i.e., higher order terms of
Lzn) for a nth order generator.

Another method is the so-called symplectic integrator [3,
4]. If the Hamiltonian can be written as H = T (p)+V (q),
then e:H:L can be factorized as

∏k
i=1 e

ci:T (p):Ledi:V (q):L,
where ci, di and k are coefficients depending upon the in-
tegration order n. At each step eci:T (p):L and eci:V (q):L can
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be integrated exactly as a drift or a kick, respectively. With
properly chosen coefficients the discarded terms are higher-
order terms of Ln. However, because the Hamiltonian does
not have constant terms the phase space terms will be on
the same or higher order as L, hence the ignored terms are
O(Lnzn). This simple integration method is adopted by
many codes; the disadvantage is that because the integra-
tion step must be small and the integration operation must
be carried out for each particle, the tracking speed is rela-
tively slow.

The above methods are developed for the s-independent
Hamiltonian, and most of the results cannot be directly ap-
plied to a 3-d Hamiltonian. Much effort has been dedicated
to the s-dependent problems; for instance, the recent work
on the modeling of insertion devices [5, 6, 7]. These meth-
ods are either leading-order or second-order approxima-
tions. In this paper we present an exact solution to integrate
through a 3-d Hamiltonian system. The method tracks par-
ticles like the truncated power series method [8] or the
transfer matrix method [9]; however, it is extended to in-
clude all the effective higher-order terms. The coefficients
need to be evaluated only once, and can be used for parti-
cles with different initial conditions. Therefore the compu-
tation speed is faster than the symplectic integrators. The
method proposed in this paper leads to integration through
the whole element (or period); therefore we believe it is
different from the approach of COSY-INFINITY[8, 10].

THE INTEGRATION METHOD
First we define the differentiation in an s-dependent

Hamiltonian system as

df

ds
= [f,H ] +

∂f

∂s
= − : H : f +

∂f

∂s
≡ ...H

...f, (1)

where f, g and H are functions of q, p, s, and
...H

... = − : H : + ∂
∂s is defined as an operator.

Next we Taylor expand the phase space component
zi(sa +Δs) at sa

zi(sa +Δs)

= zi(sa) +
d

ds
zi(s)|s=saΔs+

+
1

2

d2

ds2
zi(s)|s=saΔs2 + · · ·

= zi(sa) + Δs
...H

...zi(s)|s=sa+

+
1

2
(Δs

...H
...)2zi(s)|s=sa+ · · · ,

= exp(Δs
...H

...)zi(s)|s=sa (2)
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Therefore the transfer of phase space vector z from sa to
sb can be written as

z (sa +Δs) = exp(Δs
...H

...)z (s)|s=sa . (3)

From now on we simplify the notation as

exp(Δs
...H

...)z (s)|s=sa= exp(Δs
...H

...)z (sa ).
To illustrate the integration method, we take the coordi-

nate x as an example. From Eq. (2):

x (sa +Δs) = x(sa) +
∂H

∂px
|s=saΔs

+
1

2!
(
∂H

∂px

∂

∂x
− ∂H

∂x

∂

∂px
+

∂

∂s
)
∂H

∂px
|s=saΔs2

+
1

3!
(
∂H

∂px

∂

∂x
− ∂H

∂x

∂

∂px
+

∂

∂s
)

(
∂H

∂px

∂

∂x
− ∂H

∂x

∂

∂px
+

∂

∂s
)
∂H

∂px
|s=saΔs3 + · · · .(4)

Collecting all the ∂n

∂sn
∂H
∂px

terms,

˙̃
T1x

+
∂H

∂px
|s=saΔs+

1

2!

∂

∂s

∂H

∂px
|s=saΔs2

+
1

3!

∂2

∂s2
∂H

∂px
|s=saΔs3 + · · ·

=
∂

∂s

∫

ds
∂H

∂px
|s=saΔs+

1

2!

∂2

∂s2

∫

ds
∂H

∂px
|s=saΔs2

+
1

3!

∂3

∂s3

∫

ds
∂H

∂px
|s=saΔs3 + · · · . (5)

If we define ∂
∂s tx,1(s) = ∂H

∂px
, then Eq. (5) is the Taylor

expansion of tx,1(sa +Δs) at sa, except for the first term,
or

˙̃
T1x = tx,1(sa +Δs)− tx,1(sa) =

∫ sb

sa

ds
∂H

∂px
. (6)

The higher orders can be found iteratively. As a matter of
fact, if we define

...
I0 = 1
...
I1 =

...H
...

...
In = − : H :

...H
...
n−1

for n> 1 (7)

and

˙̃
Ti(sb, q(sa), p(sa), sa)

=

∫ sb

sa

ds1

∫ s1

sa

ds2 · · ·
∫ si−1

sa

dsi
...
Ii, (8)

then

x(sb) =

∞∑

i=0

˙̃
Tix(sa). (9)

We note that in Eq. (9) the phase space coordinates pi and
qi are evaluated at sa, which is a result of the Taylor expan-
sion.

Comparison with Eq. (2) leads to

exp(Δs
...H

...) =
∞∑

i=0

˙̃
Ti. (10)

The validity of Eq. (9) can be verified by showing that

d

dsb
x(sb) =

∞∑

i=0

˙̃
Ti

...H
...x(sa) = exp(Δs

...H
...)

...H
...x(sa)

=
...H

... exp(Δs
...H

...)x(sa) =
...H

...x(sb), (11)

which is consistent with our definitions.
Transformation of any phase space function

f(q(s), p(s), s) can be obtained in the same way,
i.e.,

f (q(sb), p(sb), sb) =

∞∑

i=0

˙̃
Ti f (q(sa ), p(sa ), sa). (12)

Here ˙̃
Ti and

...
Ii are defined as transformation integration and

differentiation operators.
We would like to point out that Equation (9) in integral

form is the exact transformation for the s-dependent sys-
tem. The advantage of (9) over (4) is that the s dependence
of

...
Iix is fully accounted by the integration, and the inte-

gration can be carried out for the entire element due to the
inclusion of all the ∂n

∂sn terms; therefore (9) simplifies cal-
culation and improves convergence.

COMPARISON WITH THE KICK-MAP
THEORY

The kick-map theory [5] has been widely used for
insertion-device design and modeling. In this section we
are going to show that it is a first order (in L) approxima-
tion of the general solution presented in the previous sec-
tion. We use the following vector potential

Ax = −
∫

hsByds (13)

As = 0 (14)

Ay =

∫

hsBxds+ gs(x, y), (15)

where gs(x, y) = − ∫
Bs(s = 0)dx. The s-independent

Bs term is likely to be zero in an insertion device; therefore
gs(x, y) ≈ 0.

The 2nd order Hamiltonian is given by

H2 ≈ −(1 + δ)hs +

+
hs

2(1 + δ)
[(px − e

P0
Ax)

2 + (py − e

P0
Ay)

2],(16)

where δ = (P −P0)/P0 is the relative momentum, H2, px
and py are normalized by the reference momentum P0.
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Computing ˙̃
T1 only,

x(s2)− x(s1) =

∫ s2

s1

ds
(1 + x

ρ )(px − e
P0

Ax)

1 + δ

≈ px
1 + δ

(s2 − s1) (17)

px(s2)− px(s1)

=

∫ s2

s1

ds{1 + δ

ρ
− (px − e

P0
Ax)

2 + (py − e
P0

Ay)
2

2(1 + δ)ρ

−(1+ x
ρ )(−2 e

P0
(px− e

P0
Ax)

∂Ax

∂x − 2 e
P0

(py− e
P0

Ay)
∂Ay

∂x )

2(1 + δ)
}

≈− ∂

∂x

∫ s2

s1

ds
1

(1 + δ)
(
e

P0
)2(A2

x +A2
y) (18)

y(s2)− y(s1) =

∫ s2

s1

ds
(1 + x

ρ )(py − e
P0

Ay)

1 + δ

≈ py
1 + δ

(s2 − s1) (19)

py(s2)− py(s1)

= − 1

2(1 + δ)

∫ s2

s1

ds(1 +
x

ρ
)(−2

e

P0
(px − e

P0
Ax)

∂Ax

∂y

− 2
e

P0
(py − e

P0
Ay)

∂Ay

∂y
)

≈ − ∂

∂y

∫ s2

s1

ds
1

(1 + δ)
(
e

P0
)2(A2

x +A2
y), (20)

where we have applied the following conditions

ρ ⇒ ∞ and

∫ s2

s1

ds

∫ s

s1

dsBx=

∫ s2

s1

ds

∫ s

s1

dsBy=0. (21)

Note that ρ ⇒ ∞ means we use the Cartesian coordinate
system. By default the reference particle gets zero bending
from the insertion devices; therefore, the first integrals are
required to be zero also:

∫ s2

s1

dsBy =

∫ s2

s1

dsBx = 0. (22)

The last line in each equation of Eqs.(17-20) repeats the
results from the kick-map theory.

We would like to point out the limitations of this 1st-
order theory:

1. The first-order transformation is not symplectic, even
though one could make it symplectic by a “drift-kick-
drift” approximation.

2. The theory is a 1st-order approximation in L; how-
ever, there are 1st-order terms of x, y, px and py in the
higher-order terms of L; therefore, even the focusing
effect is incomplete.

SUMMARY
We briefly introduced a new integration method in this

short paper. We showed that the transformation in an s-
dependent Hamiltonian system can be written as a series
of integrals. The first order approximation reduces to the
kick-map theory.
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