
QUANTIFICATION OF GEOMETRIC UNCERTAINTIES IN SINGLE

CELL CAVITIES FOR BESSY VSR USING POLYNOMIAL CHAOS ∗

J. Heller†, T. Flisgen, C. Schmidt and U. van Rienen, University of Rostock, IAE, IEF, Germany

Abstract

The electromagnetic properties of SRF cavities are mostly

determined by their shape. Due to fabrication tolerances,

tuning and limited resolution of measurement systems, the

exact shape remains uncertain. In order to make assess-

ments for the real life behaviour it is important to quan-

tify how these geometrical uncertainties propagate through

the mathematical system and influence certain electromag-

netic properties, like the resonant frequencies of the struc-

ture’s eigenmodes. This can be done by using non-intrusive

straightforward methods like Monte-Carlo (MC) simulations.

However, such simulations require a large number of deter-

ministic problem solutions to obtain a sufficient accuracy.

In order to avoid this scaling behaviour, the so-called gen-

eralized polynomial chaos (gPC) expansion is used. This

technique allows for the relatively fast computation of uncer-

tainty propagation for few uncertain parameters in the case

of computationally expensive deterministic models. In this

paper we use the gPC expansion to quantify the propagation

of uncertain geometry on the example of single cell cavities

used for BESSY VSR as well as to compare the obtained

results with the MC simulation.

THE BESSY UPGRADE

The BESSY II accelerator is a 1.7 GeV storage ring at

the HZB in Berlin. To satisfy the demands for shorter pulse

lengths in combination with relatively high beam current in

the order of mA, the structure needs to be upgraded. The

idea is to install additional cavities at the facility in order to

fill the storage ring simultaneously with pulses of variable

length [1]. This is done by adding a set of superconducting

cavities with high gradient and very good HOM damping to

the normal conducting ones as shown in Fig. 1. A variable

Figure 1: SRF cavities for the BESSY II upgrade (picture

taken from [2]).

pulse length can be achieved by two multi-cell cavities with
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different frequencies of their π-mode. This gives a beating

pattern in the longitudinal voltage and by this provides a

different pulse lengths [2].

CAVITY DESIGN

For the upgrade of the BESSY accelerator a new mid-cell

for the cavity needs to be designed with two times 1.5 GHz

five-cell cavities having a total voltage of 20 MV. A high ac-

curacy in the radio frequency (RF) behaviour is needed since

the HOM damping of the cavities has to be as high as possi-

ble to enable high beam currents [2]. As starting point of the

optimization the referenced design of the Cornell ERL [3] is

used like in the BERLinPro accelerator [4]. These cells are

optimized to be robust against perturbations [5]. However,

for an effective design we will need a scheme that is able to

get these results very efficient. It is the aim (amongst others)

to find a design that is robust against geometric uncertainties.

These uncertainties influence the RF-behaviour of the cavity

in a way that it deviates from designed values.

DETERMINISTIC PROBLEM

The deterministic problem to solve is the Helmholtz equa-

tion for the electric field E(r):

∆E(r) +

(

ω

c

)2

E(r) = 0 in Ω, (1)

where ∆ denotes the Laplace operator acting on vector fields,

and ω the resonant angular frequency of the electric field.

The speed of light in vacuum is denoted by c. The surface

of the iris ∂Ωiris is assumed to be perfectly magnetic con-

ducting:

n · E(r) = 0 on ∂Ωiris, (2)

whereas the remaining boundary ∂Ωwall is assumed to be

perfectly electric conducting:

n × E(r) = 0 on ∂Ωwall, (3)

with the normal component n of the boundary of the struc-

ture. The geometry is given by a cavity cell consisting of

two half cells as shown in Fig. 2. Since the equator ra-

dius needs to be equivalent on both half cells the problem

geometry consists of 13 independent parameters. This eigen-

mode problem can be solved in 2D assuming the structure

to be rotational symmetric. For the solution of this eigen-

problem the 2D eigenmode solver SUPERFISH [6] is used.

After the computation of the eigenmodes, the cavity geome-

try is changed in such a way that the frequency of the first

TM monopole mode TM010 equals 1.3 GHz. This tuning

is performed using the Brent-Decker algorithm [7]. From

the TM010-mode of the tuned cavity several RF-parameters
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Figure 2: Parametrized geometry of an elliptical half-cell

using two ellipses.

such as the shunt impedance Rs , the quality factor Q0, the

geometry factor G and the r/Q are computed.

UNCERTAINTIES

A real life structure deviates in its behaviour from the de-

signed one. These deviations have various reasons and can

be roughly subdivided in deviations caused by the fabrica-

tion process and deviations caused by the operation. While

the fabrication errors are in any case static, and thus not

subject to any temporal changes, the operational deviations

can be time-dependent or, respectively static. For our ac-

tual investigations we only consider rotational symmetric

distortions. This has two reasons. First, the structure can

be computed in 2D and by this gives a huge speed up for

the computation. The second reason is the mathematical

description of the geometry. In the case of perturbations

breaking the rotational symmetry the structure would not be

describable using the way shown in Fig. 2.

Uncertainty Quantification

Uncertainty quantification (UQ) denotes a set of mathe-

matical techniques mostly used in the design process of a

system in order to quantify the effects of uncertainties to the

systems behaviour. UQ can be performed in every iteration

of the design process, and its outputs can be considered as a

goal function. This leads to a design that is robust against un-

certainties of any kind and gives a maximum likelihood for

the structure to operate in given limitations. In most cases

it requires a repetitive solution of a deterministic problem

with varying input parameters.

These techniques can be divided into probability sam-

pling ones like Monte Carlo (MC) [8] or latin hypercube

and non-probability sampling techniques like perturbation

theory. For the application described in this article proba-

bility sampling techniques are the method of choice as they

do not require any in-depth knowledge of the solution of the

problem. Hence the deterministic model can be considered

as black box. This gives the technological advantage that the

solution of the deterministic model (in this case the specific

eigenmode solver) can be easily substituted, leading to a

high variability and wide range of practical applications for

the written code.

For probability sampling techniques there is a wide range

of methods that fit our requirements for the solution. The

first choice which is extremely easy to implement is the MC

sampling technique. The drawback for this method is its low

order of convergence (log(N )). For this reason we picked

the polynomial chaos technique which was first described

by Ghanem and Spanos [9] and was previously successfully

used in our working group for the investigation of brain

conductor models in bio-engineering [10].

Polynomial Chaos

The technique of choice is the generalized polynomial

chaos technique (gPC) which will be briefly explained in the

following. For a detailed description of gPC see [11] and

references therein.

The main idea is to find a surrogate model of the original

one for which the UQ problem is way easier to solve. This

is done by expanding the output quantity of interest Y by a

multivariate polynomial expansion ψk (ξ ) of the degree P:

Y ≈
P
∑

k=0

ckψk (ξ ), (4)

where Legendre-Polynomials are being used in order to get

the best convergence for uniformly distributed input vari-

ables. The expansion coefficients ck are being determined

by a numerical integration which requires the evaluation of

the deterministic problem at quadrature nodes determined

by the used quadrature. In this case the sparse grid based on

the Clenshaw Curtis rule is used. Since the computational

demand scales with the input dimension, in order to reduce

the computational demand a univariate gPC expansion was

performed for all 13 input parameters as a preprocessing

step to find the five most sensitive parameters. In the full

computation with gPC only these five parameters will be ac-

counted as uncertain while all other parameters are assigned

their design value. For the probability density function of

the input parameters we assume a uniform distribution with

a standard deviation of 0.125 mm as measured in previous

work at Cornell [5] for this specific cavity design.

RESULTS

The uncertainty quantification for the single cell cavity

was performed using gPC with a polynomial order of p = 2

using 61 samples. To verify these results, the same compu-

tation was performed using MC. The number of samples

needed is computed with the width of a 95% confidence

interval for the mean value E of the quality factor Q0:

[

E −
1.96σ
√

N
,E +

1.96σ
√

N

]

, (5)

with the standard deviation σ of the output parameter after

N samples. This confidence interval is supposed to have a

relative width of 0.1%, which is the case at approximately
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Figure 3: Probability density function of several output parameters computed with MC (blue curve) and gPC with polynomial

degree p = 2 (red curve).

4000 samples. In Table 1 the mean values of several RF-

parameters are shown computed using gPC and MC. It be-

comes obvious that the results of gPC and MC match in the

order of below 1%. Also the results lead to the conclusion

that though the cavity structure deviates from the designed

value, the mean of any of the RF-parameters does hardly

vary from its design value. Remarkably, the slight devia-

tions tend to be numerical, since the error decreases if the

polynomial degree of the solution is increased.

Table 1: Mean of Several RF-Parameters

gPC MC Design Value

Q 1.0181 · 1010 1.0181 · 1010 1.0181 · 1010

Rs 16.561 · 106 16.560 · 106 16.561 · 106

G 272.8168 272.8116 272.819

r/Q 111.0237 111.0084 111.04

Using gPC we were able to achieve a major reduction of

the computational demand, compared to MC. This enables

us to use uncertainty quantification as part of a multi dimen-

sional goal function in an optimization process. The results

also lead to the assumption that it is possible to handle the

half-cells separately in case that the cell design is rotational

symmetric. This is due to the fact that there seem to be nearly

no non-linear effects between the geometry parameters of

the half-cells regarding the output parameters. Further, the

results indicate that due to the high linearity, the probability

density function of the output parameter hardly depends on

the distribution of the input parameter.
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