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Abstract

The kernel of beam dynamics simulations using the

particle-in-cell (PIC) model is the solution of Poisson’s equa-

tion for the electric potential. A very common way to solve

Poisson’s equation is to use the convolution of charge density

and Green’s function, the so-called Green’s function method.

Additionally, the integrated Green’s function method is being

used in order to achieve a higher accuracy. For both methods,

the convolutions are done using fast Fourier transform based

on the convolution theorem. However, the construction of

the integrated Green’s function and the further convolution

is still very time-consuming. The computation can be accel-

erated without loosing precision if the calculation of Green’s

function values is limited to that part of the computational

domain with non-zero grid charge density. In this paper we

present a general numerical study of these Green’s function

methods for computing the potential of different bunches:

The results can also be used in other simulation codes to

improve efficiency.

INTRODUCTION

Inside a particle accelerator chamber, regardless of the

accelerating RF electromagnetic field, there is also another

important source of electromagnetic field to study: the beam

itself, which produces both space charge and wake fields.

These fields change variously, due to the total current, the

bunch shape, beam pipe and surrounding residual materi-

als. In modern accelerators with very high bunch charge,

the space charge force calculation becomes even more cru-

cial and often lack to agree with the experimental results. A

common approach numerically convolutes the charge density

with Green’s function (GF) as one of the standard solution

techniques for Poisson’s equation in order to derive the elec-

tric self-field. However, this numerical strategy may suffer

from errors in the Green’s function values. This happens

when the considered bunch has an extremely long cigar-

shape or short pancake-shape. A highly accurate way to

overcome this issue is to use the so-called integrated Green’s

function (IGF) method, which deals with the analytical in-

tegration rather than a numerical evaluation. However, the

restriction of IGF is also obvious in that the calculation of the

analytical integration value is very time-consuming. This

can cost the most part of the computing time in space charge

calculation when parallel implementation is not used.

There are several practical simulations which heavily rely

on space charge calculation in beam dynamics. For instance,
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beam tracking, the beam-beam interaction [4], the positron

beam and electron clouds interaction as well as the simula-

tion of the interaction between an electron bunch and ion

clouds, etc. To study these different types of simulation,

the space charge force calculation can be classified into two

groups based on the computational domain. We denote it

as the near-bunch domain calculation and the far-bunch do-

main calculation. As indicated by its name, the near-bunch

domain calculation discretizes a cubic domain just covering

the bunch and then calculates the self-field. In this case, no

extra field outside of the bunch needs to be calculated. The

basic beam tracking and beam-beam interaction simulation

belong to this type. While the far-bunch domain calculation

means the extra field out of bunch should be calculated, since

this field acts on the electron or ion clouds in the simulation

of the interaction between the bunch and charged clouds.

These clouds are not shaped as an inerratic and concentrate

area, but distributed widely spread.

In this paper, we present a less time-consuming method

called cutting Green’s function method (CGF), but showing

the same accuracy as IGF for far-bunch domain space charge

calculation. This new method brings a great benefit for the

calculation time for beam tracking in a far-bunch domain

and for the interaction simulation between particle bunches

and charged clouds.

NUMERICAL SOLUTION OF POISSON’S

EQUATION

The solution of Poisson’s equation in free space [2] reads

as:

ϕ(x, y, z) =
1

4πε0
·

∫∫∫

ρ(x′, y′, z′)G(x, x′, y, y′, z, z′)dx′dy′dz′, (1)

with Green’s function

G(x, x′, y, y′, z, z′) =
1

√

(x − x′)2 + (y − y′)2 + (z − z′)2

(2)

GF integral: With the well-known midpoint rule for the

numerical integral in Eq.(1), the discretized GF formula is

given by

ϕ(xi, yj , zk) ≈
hxhyhz

4πε0
·

Nx
∑

i′=1

Ny
∑

j′=1

Nz
∑

k′=1

ρ(xi′ , yj′ , zk′)G(xi, xi′ , yj , yj′ , zk, zk′). (3)
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IGF integral: With the summation of integrals for Green’s

function over each grid cell [xi − hx

2 , xi + hx

2 ] × [yj −
hy

2 , yj +
hy

2 ] × [zk − hz

2 , zk + hz

2 ], the discrete IGF formula

is given by

ϕ(xi, yj , zk) ≈
1

4πε0
·

Nx
∑

i′=1

Ny
∑

j′=1

Nz
∑

k′=1

ρ(xi′ , yj′ , zk′)G̃(xi, xi′ , yj , yj′ , zk, zk′), (4)

where G̃(xi, xi′ , yj , yj′ , zk, zk′) can be calculated for the

Green’s function in Eq.(2) like :

G̃(xi, xi′ , yj , yj′ , zk, zk′) =

∫ xi′ +hx/2

xi′ −hx/2

∫ yj′ +hy/2

yj′ −hy/2

∫ zk′ +hz/2

zk′ −hz/2

G(xi, x′, yj , y′, zk, z′)dx′dy′dz′. (5)

This integral can be calculated from the primitive function

(antiderivative) of Eq.(2) derived by MATHEMATICA, its

formal expression can be found in [3]. In order to make the

calculation of (3), (4) more efficient, we should implement it

as cyclic convolution, for which expansions G̃ex, ρex of

G̃ and ρ are needed. The charge density ρex is padded

with zeros in all expansion grid points, the tilde Green’s

function G̃ is expanded to be symmetric. The details are

introduced in [1] [2]. Generally, using 3D discrete Fourier

transformation F and convolution theorem, the expanded

potential expression is:

[ϕex]i,j,k =
1

4πε0
F−1{[FG̃ex]i,j,k·[Fρex]i,j,k}2Nx,2Ny,2Nz

.

(6)

Finally, the potential at each grid point equals the first

Nx, Ny, Nz values of the expanded potential expression on

each axis.

THE CUTTING GREEN’S FUNCTION

However, if we use the IGF for the far-bunch domain

calculation, most portion of the integrated Green’s function

is over-calculated:

As we read from Eq.(4) and Fig.1, suppose the bunch

domain (surrounding cuboid) is located at the subdomain

[xb, xt] × [yb, yt] × [zb, zt] of the grid (corresponding to

[Nxb, Nxt] × [Nyb, Nyt] × [Nzb, Nzt]), which is in the cen-

ter of the computational domain [x1, xNx
] × [y1, yNy

] ×
[z1, zNz

], the ratio between bunch domain and the complete

computational domain is 1 : αx, 1 : αy, 1 : αz in x−,

y− and z−direction, respectively. taking the sum of the

discretized convolution, there is a large area, in which the

charge density is zero. Therefore we may introduce the

x

y

Bunch domain

Green’s function domain

Computational domain

Figure 1: A schematic plot of cutting Green’s function

domain for Cartesian coordinates.

approximation

ϕ(xi, yj , zk) ≈
1

4πε0
·

Nxt
∑

i′=Nxb

Nyt
∑

j′=Nyb

Nzt
∑

k′=Nzb

ρ(xi′ , yj′ , zk′)G̃(xi, xi′ , yj , yj′ , zk, zk′). (7)

In Eq. (7), we neglect some portion of Green’s function

in the calculation: As the domain bounded by the red line

(Fig.1) is sufficient to compute exactly, the remaining do-

main can be simply set to zeroes. Still, the results stay

exactly the same. This means: The Green’s function value

G̃ outside of the subdomain bounded by the red line does

not contribute to the discretized convolution at all. The

discretized convolution is done using the convolution the-

orem, which multiplies the discrete Fourier transforms of

both Green’s function and charge density. Therefore, the

Green’s function values should be calculated in advance. We

define the ratio between the Green’s function domain and

the total computational domain as (1 + αx,y,z/2) : αx,y,z .

The corresponding mesh number of calculated Green’s func-

tion values is Mx,y,z = [
2+αx,y,z

2αx,y,z
Nx,y,z] and the subdomain

[1, Mx] × [1, My] × [1, Mz] cut out of the original domain

[1, Nx] × [1, Ny] × [1, Nz]. We call it cutting integrated

Green’s function (CIGF) G̃c(xi, yj , zk).

G̃c(xi, yj , zk) =

{

G̃(xi, yj , zk), (1, 1, 1) ≤ (i, j, k) ≤ (Mx, My, Mz);
0, otherwise;

As GF and IGF method, we extend G̃c and ρ to G̃cex and ρex.

Using 3D discrete Fourier transformation F and convolution

theorem as Eq. (6) to calculate the potential the same way.
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VERIFICATION

We use an ideal uniform ellipsoidal beam as an example.

αx = αy = αz = 5. The relative errors we used here are

defined as:

y

x

 

 

−0.01 −0.005 0 0.005 0.01

−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

0.5

1

1.5

2

2.5

3

3.5

4

x 10
−3

CIGF. ηφ(:, :, Nz

2 )

y

x

 

 

−0.01 −0.005 0 0.005 0.01

−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

0.5

1

1.5

2

2.5

3

3.5

4

x 10
−3

IGF. ηφ(:, :, Nz

2 )

Figure 2: Comparison of ηφ(:, :, :) for an ideal uniform el-

lipsoidal beam.

ηϕ(i, j, k) : =
|ϕi,j,k − ϕtruei,j,k

|

maxi,j,k |ϕtruei,j,k
|
, and

η̂ϕ : = max
i,j,k

(ηϕ(i, j, k)).

ηE(i, j, k) : =
||Ei,j,k − Etruei,j,k

||2

maxi,j,k ||Etruei,j,k
||2

, and

η̂E : = max
i,j,k

(ηE(i, j, k)).

Here, the notations are, ηϕ(i, j, k), η̂ϕ, ϕi,j,k and ϕtruei,j,k

as the relative error of the potential at index (i, j, k), the

global relative error of the potential, the computed potential

at index (i, j, k) and the true potential for the same index, re-

spectively. So does the electric field: ηE(i, j, k), η̂E, Ei,j,k

and Etruei,j,k
.

DISCUSSION

This CIGF routine is particularly efficient for far-bunch

domain simulation. As we see from Table 1, we could cut

Table 1: Comparison between IGF and CIGF

N η̂ϕ η̂E IGF Time CIGF Time

32 0.0587 0.0619 1.5175 s 0.6233 s

64 0.0130 0.0334 10.1015 s 3.6115 s

128 0.0045 0.0290 78.5222 s 27.6219 s

a valid Green’s function domain, the volume is as small as
(2+αx)(2+αy)(2+αz)

8αxαyαz
of the computational domain, compare

Fig.1. Free boundary conditions are used for an open-ended

round pipe, which is embedded into the cuboid computa-

tional domain. Even though one could set up a constant grid

in advance, we suggest to cyclically adapt the grid, due to

the grid dispersion and the need of fine grid resolution with

the Debye length.

For near-bunch domain simulation, we recommend an-

other fast IGF called reduced integrated Green’s function

(RIGF) from our former work [6], which uses a mixed GF

and IGF to achieve a high efficiency.

CONCLUSION

A fast convolution approach for an FFT-based Poisson

solver is presented. The potential calculated by the cutting

Green’s function method introduced above can be used for

beam dynamics simulations in open-ended circular pipes.

The idea can be enhanced to any type of Green’s function

for far-bunch domain calculation. For instance, the same

cutting approach to another integrated Green’s function

from [7] suits for an open-ended rectangular pipe. In general,

we showed an efficient numerical convolution method for

Green’s function method, bringing benefit in far-bunch cal-

culation, which can be used in the calculation of the electric

field for the bunch in electron (ion) clouds simulation as well

as in other simulations.
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