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Abstract

The coherently emitted electric field pulse of a short elec-

tron bunch is obtained by summing the fields of the indi-

vidual electrons, taking phase differences due to different

longitudinal positions into account. For an electron density,

this sum becomes an integral over the charge density and

frequency spectrum of the emitted radiation, which, how-

ever, is difficult to evaluate numerically. In this paper, we

present a fast method valid for arbitrary bunch shapes. We

also include shielding effects of the beam pipe and consider

ultra-short bunches, where the high frequency part of the

coherent synchrotron spectrum is cut-off not by the inverse

bunch length but by the critical frequency of synchrotron

radiation. Our technique is applied to bunches, simulated

for the linac-based FLUTE accelerator test facility at KIT.

INTRODUCTION

When electron bunches become short compared to the

wavelength of interest the radiation is emitted coherently.

Due to the large number of electrons per bunch, coherent

radiation can be hundred million times more intense than

incoherent radiation. The coherently emitted electric field

pulse can be calculated by convoluting the electron bunch

shape with the electric field of a single electron. In this

paper we present an efficient semi-analytic approach valid

for arbitrary bunch shapes and general spectra.

To produce radiation in the THz regime requires bunch

lengths of the order of 1 ps or below. FLUTE is compact

linear accelerator [1], currently constructed at KIT [2], that

will investigate, amongst other things, the creation of THz

pulses. We apply our method to calculate the electric field

pulse of a simulated 5,6 fs electron bunch.

DERIVATION

The electric field pulse coherently emitted by an electron

bunch is obtained by summing over the individual fields

of all electrons [3]. Here, we assume that the field of a

single electron, as detected by an observer at distance R and

time t, is given by a plane wave propagating in the positive

z-direction [4]

Eω (R, t) = Re
(

E0(ω) e−iω (t−R/c)−iφ
)

, (1)

where c denotes the speed of light. In the following, we set

R = 0 as it merely leads to a time shift. The details of the

radiation mechanism result in a frequency dependence of

the spectral amplitude E0(ω). In the following, the phase φ

is assumed to be constant for all electrons and we set φ = 0
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in this paper. In summing the fields of the electrons the po-

sitions in the bunch are represented by a phase factor iω ∆τ,

where ∆τ is the displacement relative to the bunch center.

Finally, the electric field in the time domain is obtained by

integrating over all frequencies

E(t) = Ne Re

(∫

∞

0

E0(ω) ρ̃(ω) e−iω t dω

)

. (2)

Here, Ne denotes the electron number and ρ̃(ω) denotes

the Fourier transform of the normalized charge distribution.

Throughout this paper, a ∼ above a function denotes the

Fourier transform of the function. The main problem is then

to solve

ǫ (t) ≡

∫

∞

0

E0(ω) ρ̃(ω)e−iωt dω . (3)

In principle, (3) can be computed numerically, but the in-

tegral converges poorly due to the oscillating nature of the

integrand. In [5], (3) was solved analytically for arbitrary

bunch profiles by using cubic spline interpolation of ρ and

the low-frequency spectrum of synchrotron radiation for E0.

Here, we extend the method to work for general spectra as

well.

The first step is to interpolate the charge distribution as [6]

ρinterpol(t) =

N
∑

i=0

ρi f

(

t − ti

∆t

).

(4)

Here, (ti , ρi ) are the data points of the charge distribution

with ti = tmin + i∆t, i = 0, . . . ,N and f (x) denotes the

kernel of the cubic spline interpolation. The kernel f (x)

has the property f (0) = 1 and equals zero at all other in-

tegers. For the following to work, it is important that the

ti are equidistant. Using (4), the Fourier transform can be

calculated as

ρ̃(ω) =

∫

∞

−∞

ρinterpol(t)e
iω tdt

= ∆t

N
∑

i=0

ρie
iωti

∫

∞

−∞

f (τ)eiω∆tτ dτ

= ∆t ρ̃dis(ω) f̃ (ω∆t) . (5)

Notice that the Fourier transform factorizes into a discrete

Fourier transform depending only on the data, and the

Fourier transform of the kernel. The latter is given by [6]

f̃ (k) = −2

(

6 −
18

2 + cos k

)

1 − cos k

k4
. (6)

.
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In the second step, we define ǫ̃ (ω) ≡ E0(ω) ρ̃(ω) and

ǫ̃ j ≡ ǫ̃ (ω j ) with ω j ≡ j ∆ω, j = 0, . . . ,M. The integrand

in (3) can thus be approximated as

ǫ̃ interpol(ω) =

M
∑

j=0

ǫ̃ j f

(ω − ω j

∆ω

)

. (7)

After inserting (7) into (3), we can apply the same method

as in (5) to calculate ǫ (t) (with E0(ω) ≡ 0 for ω < 0 under-

stood, allowing to extend the lower integration limit in (3)

to −∞). The result simply reads

ǫ (t) = ∆ω ǫdis(t) f̃ (∆ω t) . (8)

Eq. (8) is our main result since inserting it into (2) gives the

electric field pulse for an arbitrary pulse shape and general

spectrum. It is a combination of a pure analytic result for

the interpolation and a numeric discrete Fourier transform.

The choices for the number of points M in the frequency

domain and their spacing ∆ω cannot be determined a priory

on general grounds but require knowledge about ǫ̃ . We give

examples in the following section.

APPLICATIONS

Shielded Spectra

In this section we consider a Gaussian bunch of width σ

and a low-frequency cutoff due to shielding. The spectrum

will be the low-frequency synchrotron radiation spectrum,

E0(ω) ∼ ω1/6, multiplied by a cutoff function G(ω). Based

on [7] we introduce a low-frequency cutoff as

G(ω) ≡
(

1 − e−ω/ωcut

)n
. (9)

The frequency ωcut sets the frequency below which frequen-

cies are exponentially suppressed and the order n determines

the steepness of the transition. For either ωcut = 0 or n = 0

the spectrum is unshielded. In practice, it is more convenient

to use the frequency ω50 ≡ − ln
(

1 − 2−1/n
)

ωcut, at which

the cutoff function G(ω) reaches 50%.

Fig. 1 shows the effect of the cutoff frequency ω50 on the

electric field. The peak field decreases exponentially with

increasing cutoff. For ω50 > 1/2σ an oscillating compo-

nent develops as well. It can be understood by noting that

for ω50 > 1/2σ the spectrum ǫ̃ (ω) can be roughly approxi-

mated by

ǫ̃ (ω) ∼ e−(ω−Ω)2
Σ

2/2 , (10)

which is a Gaussian with width determined by Σ and centered

at frequency Ω, with Ω/ω50 ∼ 1 and Σ/σ ∼ 1. The Fourier

transform of (10) then reads

ǫ (t) ∼ e−t2/2Σ2

cos(Ωt) , (11)

and shows the oscillating term. If ΩΣ > 2π one period of

the cos fits into the Gaussian envelope. We have ΩΣ ≃ 2.0

and ΩΣ ≃ 2.6 for ω50 = 1/2σ and ω50 = 2/σ, respectively,

in Fig. 1.

Fig. 2 shows the influence of the cutoff order n. Increasing

n above 1 has only a minor influence on the peak field, as

was also noticed in [7].
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Figure 1: Normalized electric field of a Gaussian bunch

over time (in units of bunch length σ) for different cutoff

frequencies ω50 (in units of inverse bunch length). The peak

field decreases exponentially with increasing ω50. For the

oscillation see text.
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Figure 2: Normalized electric field of a Gaussian bunch over

time (in units of bunch length σ) for different orders n. The

unshielded case corresponds to n = 0. Orders n > 1 only

have a minor influence on the peak field.

Ultra-short Bunches

We now consider bunches emitting synchrotron radiation,

whose single particle spectrum is given by [3]

E0(ω) =
e

√
4πǫ0c

31/4√γ
√

2

√

S

(

ω

ωc

)

(12)

S(x) = x

∫

∞

x

K5/3(ξ)dξ ,

where γ and ωc denote the Lorentz factor and critical fre-

quency, respectively. For ω ≪ ωc , E0(ω) ∼ ω1/6, as was

used in the previous section. This approximation is justified

as long as 1 ≪ σωc [5] but breaks down for ultra-short

bunches considered in this section.

When using ǫ̃ (ω) ∼ ρ̃(ω)
√

S(ω/ωc ) in (7) one has to

properly choose ∆ω and M. For small ω ǫ̃ (ω) increases

as ω1/6 and for large ω is suppressed either polynomially

by ρ(ω) (if 1 ≪ σωc) or exponentially by
√

S (if 1 ≫
σωc). But ω1/6 has infinite derivatives at ω = 0 and, thus,

cannot be approximated by a cubic spline. However, the

,
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Figure 3: Field pulses for a long (10 fs) and two ultra-short

Gaussian bunches (1 fs and 0.1 fs). The FWHM of the ultra-

short pulses roughly equals 1/ωc (vertical lines). Decreasing

the bunch length further does not change the pulse.
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Figure 4: Calculated electric field pulse for a simulated 1 pC

bunch profile (inset) at FLUTE, using the full synchrotron

spectrum (solid). The use of the low-frequency spectrum

(dashed) is invalid in this case. Focusing can increase the

peak field by two orders of magnitude.

error becomes small for small ∆ω and we found that

∆ω =

{

0.1/σ, 1 ≪ σωc

0.05ωc , 1 ≫ σωc
, (13)

leads to errors of a few percent.

Fig. 3 shows the pulse shapes for Gaussian bunches with

σ = 10 fs, 1 fs, and 0.1 fs, corresponding to σωc = 2.3,

0.2, and 0.02, respectively. Thus, the latter two bunches are

ultra-short. Decreasing the bunch length further does not

change the pulse. This is because ρ̃(ω) ∼ 1 up to ωc and

ǫ̃ becomes independent of ρ̃. For the same reasoning the

FWHM of the ultra-short pulses depends only on ωc and is

about 1/ωc (vertical lines in Fig. 3).

For long Gaussian bunches the peak field increases as

σ−7/6 for decreasing σ. When the bunch becomes ultra-

short the peak field approaches a constant that is only a

function of the bunch charge.

Finally, we calculate the pulse of a bunch simulated for

FLUTE [1, 2]. The longitudinal bunch profile of the 1 pC

bunch, shown in the inset of Fig. 4, has an RMS of 5.6 fs

leading to a broad ρ̃ extending up to 2ωc . Ignoring that

the high-frequency cutoff is given by ωc is, thus, no longer

justified. Doing so leads to a peak field too large by a factor of

∼ 2.7, because the spectrum erroneously has more intensity

at higher frequencies. Furthermore, the field pulse follows

the shape of the charge profile. At large times (corresponding

to small frequencies), both methods yield the same result,

since their ǫ̃ hardly differ. The full field pulse is “washed-

out” and decreasing the bunch length further would not yield

a higher peak field. Using a different radiation generating

process with a broader spectrum, e.g. transition radiation,

would change that.

SUMMARY

We introduced a method to calculate the electric field

of coherent THz pulse for arbitrary bunch shapes and gen-

eral spectra. It is a combination of a discrete Fourier trans-

form and analytic results. As applications we discussed

shielded spectra and fields of ultra-short bunches emitting

synchrotron radiation. In the later case, the spectra are lim-

ited by the critical frequency, leading to “washed-out” pulses.

Using emission processes that have a broader spectrum, e.g.

transition radiation, would then lead to pulses whose width

again is limited by the bunch length. This will be pursued

in the future.
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