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Abstract

A discharge or RF-breakdown event in a CLIC acceleration

structure causes the localized release of gas molecules in-

side a thin conduction limited system with distributedpump-

ing. We discuss the transient behavior of such a system in

the molecular flow regime that allows an analytical solution

with the help of Greens functions. They describe the tempo-

ral evolution of the gas density and the gas flow ejected from

the ends of thin pipes of finite length. Distributed pumping,

for example through the HOM damping slits is taken into

account.

INTRODUCTION AND MODEL

We calculate the temporal evolution of the gas density

following a spontaneous injection of a known amount of

gas in a thin pipe with or without distributed pumping. Ex-

amples of such systems are radio-frequency structures for

linear accelerators that experience a discharge due to high

power levels. Below we show that the pressure distribution

inside the pipe as well as the amount of gas ejected from

the end of the pipe as a function of time can be calculated

analytically. This allows to estimate the behavior of such

a system without computer simulations and might be use-

ful in debugging numerical codes or calibrating hardware

such as pumps. We assume that only a reasonably small

amount of gas is desorbed at each particular event such that

we can assume to operate in the molecular flow regime un-

der isothermal conditions. In this case there is no interac-

tion among gas molecules and that the interactions with the

walls of the vacuum vessel can be described by diffuse scat-

tering. Under these conditions the time dependent pressure

profile P(z, t) along a conduction limited pipe of length l

with 0 < z < l obeys the following partial differential equa-

tion [1]

v
∂

∂t
P =

∂

∂z
c
∂

∂z
P − sP + q (1)

with the volume V = vl of the pipe and the conductance

C = c/l, the pump speed S = sl and the out-gassing rate

Q = ql. In these equations the ’per-length’ quantities q,v, s

are implicitly defined. For practical purposes it is worth

noting that for a round pipe with radius r the conductance

C depends on the mass of a gas molecule m and the absolute

temperature T through the Knudsen equation [2]

C =
4

3

√

2πkT

m

r3

l
(2)

where k is the Boltzmann constant. For a general cross

section the conductance can be calculated by the Smolu-

chowski formula, eq. 4.152 in [3].

The specific conductance c is constant for given mass and

temperature in the pipe and we can therefore rewrite Eq. 1

as
∂P

∂t
= D
∂2P

∂z2
− 1

τ
P (3)

with the diffusion constant D = c/v and the pump-down

time scale 1/τ = s/v. Note that the physical parameters

such as particle species and temperature that determine the

gas dynamics are contained in the two parameters D and τ.

We briefly comment on the limits of applicability of the

diffusion equation which is mainly determined by the diffu-

sion constant D and the pump speed s, both assumed to be

constant which is not entirely justified. First, eq. 2 is strictly

valid only for long pipes. For shorter pipes eq. 4.158 in [3]

indicates that the conductance varies by up to 13 % from

eq. 2 leading normally to an overestimate of the diffusion

constant D in the range of a several times the pipe diameter

from the gas source. Second, the pump speed s, is affected

by the fact that the flow far away from the gas source be-

comes more directional. This is the so-called beaming ef-

fect. The transverse flow pattern at the end of a long pipe is,

for example, shown in [4] and indicates that the transverse

flow-profile as a function of radius ρ is given by the ellip-

tic integral [5] E(ρ/r) which is unity at the surface of the

pipe at ρ = r and π/2 in the center at ρ = 0. Averaging

this over the entire aperture yields 4/3 and eventually leads

to eq. 2. Thus the flow or the number of molecules near

the surface, where the pumps are located is reduced to 75 %

compared to the average flow. Since we use eq. 2 in eq. 3

we conclude that far away from the gas source we underesti-

mate the pump speed by about 25 % at distances sufficiently

far away from the gas source where significant beaming has

developed.

Returning to the problem at hand, eq. 3 can be solved [6]

by means of Fourier transforming the spatial coordinate z

of the pressure P(z, t)

P(z, t) =
1

2π

∫

∞

−∞

P̃(k, t)e−ikzdk . (4)

After inserting in Eq. 3 and separating variables we obtain

dP̃/P̃ = −(k2D+1/τ)dt which can be trivially integrated to

yield P̃(k, t) = P0 e−(k2D+1/τ)t ,where P0 is the integration

constant that corresponds to the initial pressure at time t =

0. Performing the inverse Fourier transform to leads to the

pressure as a function of the spatial variable z

P(z, t) =
P̃0√
4πDt

e−t/τe−z2/4Dt (5)

which we recognize as a spreading Gaussian with rms width√
2Dt – the well-known solution of the diffusion equa-
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Figure 1: The location of the image gas loads.

tion [7] – that is decaying exponentially with the pump-

down time scale τ. Instead of using the pressure we now in-

troduce the longitudinal density of molecules dN/dz which

is related to the pressure P by P = kT dN/dzv. This allows

us to rewrite Eq. 5 as

dN

dz
(z, t) =

N0√
4πDt

exp

[

− (z − z0)2

4Dt

]

e−t/τ (6)

which is intuitively appealing. Here N0 is the number if ini-

tially released gas molecules. Equation 6 fulfills the differ-

ential equation in Eq. 3 but does not obey the boundary con-

ditions at the ends of the pipe where we assume that the pipe

is connected to a large reservoir with big pumps. The proper

boundary condition at the ends is therefore dN/dz |end ≈ 0

and we will now make sure that the solution fulfills this re-

quirement.

SOLUTION

We can construct a solution that satisfies the boundary

condition by introducing the concept of ’image gas loads’

inspired by [8] and imagine that the pipe extends infinitely

to both sides and place a virtual gas source that causes a

negative particle distribution which also obeys the differen-

tial equation Eq. 1. If the distance from the real gas source

to the pipe end equals that of the virtual source, the sum of

both distributions will add up to zero at all times t. In Fig. 1

the first right image gas load is labeled ’1st r-image’ and

since it is negative, the arrow points down.

Of course the first image gas load also has a non-zero

contribution on the left pipe end which in turn requires a

further image load (2nd r-image) far to the left that compen-

sates this, but in turn causes a small error at the other end on

the right side which requires a further compensation (3rd r-

image). The same is true for the image gas load (1st l-image)

that initially forces the pressure to zero on the left end and

generates a small error on the right end which requires the

image gas load labeled 2nd l-image to correct. We therefore

find that we have two cascades of image gas loads shown in

Fig. 1, one with dotted arrows for the right end and one with

solid arrows for the left end.

The positions of the first few image gas loads are easily

calculated by hand. We start with the r-images. If the initial

burst occurs a distance x to the right of the center of the

pipe that has a length 2l, the first r-image is located at x1 =

l + (l − x) = 2l − x. The 2nd r-image is located when we

mirror x1 at the left exit and find the location x2 = −l − (l +

x1) = −2l − x1 = −4l + x. Continuing in the same way, by

mirroring x2 at the right exit we find the location of the third
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Figure 2: The evolution of the particle density distribution

after the initial gas burst at z = 0.03 m from 0.5 ms to 10 ms

in steps of 0.5 ms. The curves for 0.5, 1.0, and 1.5 ms are

indicated in the figure. The curves at subsequent times get

continuously smaller but are not individually labeled.

image gas load to be x3 = l + (l − x2) = 2l − (−4l + x) =

6l − x. This scheme can be continued and we find that the

locations of the r-images are given by xn = (−1)n−1(2nl −
x) because there is a term 2l picked up at every mirroring

process. The same procedure can be applied to determine

the locations of the images to accommodate the boundary

conditions at the left exit and we find yn = (−1)n (2nl +

x). Note that the locations of the image gas loads xn and

yn rapidly increase by 2l in every iteration and since each

image gas load is described by a spreading Gaussian, we

can expect rapid convergence.

At each of the locations xn and yn we now place an image

gas load with the appropriate sign. The dynamics of each

such load is given by Eq. 6 and the distribution that fulfills

the boundary condition to have zero pressure at the exit is

given by

dN

dz
(z, t) =

N0e−t/τ
√

4πDt

{

e−(z−x)2/4Dt (7)

+

∞
∑

n=1

(−1)n
[

e−(z−xn )2/4Dt + e−(z−yn )2/4Dt
]

}

where the first term in the curly braces describes the distri-

bution of the initial gas burst. The sum has two exponential

terms which describe the image gas load distributions at lo-

cations xn and yn that suitably alternate sign. Since the

locations xn and yn appear quadratically in the argument of

the exponentials we can expect rapid convergence. It is easy

to implement Eq. 7 in Matlab and add terms in the sums un-

til they are below a threshold. We found that normally less

than 10 terms in the sum are sufficient. dN/dz in eq. 7 de-

scribes the number of particles in a small interval dz along

the pipe after a time t if N0 gas molecules are injected at

position x and thus constitutes the sought Greens function.
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Figure 3: The number of molecules ejected from the ends

of the thin pipe as a function of time. The solid and the

dashed line indicate the profiles at the right and left ends

for nominal conditions. The dotted lines indicate the pro-

files where the pump strength is reduced by 25 % and the

dot-dashed lines where the diffusion constant is reduced by

13 %, respectively from their nominal values.

Apart from the particle distribution inside the pipe that

rate at which particles are ejected from the ends of the pipe

is important, because it carries the information about the

location of the initial gas burst. We therefore calculate the

gas flow Q = −cdP/dz or, equivalently, the rate of ejected

particles dN/dt = Q/kT. Using Eq. 7 and performing the

derivative with respect to z we find

dN

dt
= −DN0

4
√
π

1

(Dt)3/2

{

F (z, x) (8)

+

∞
∑

i=1

(−1)n
[

F (z, xn) + F (z, yn)
]

}

for z = ±l and F (z, x) = (z−x)e−(z−x)2/4Dt . The equations

for the particle distribution Eq. 7 and the ejected particle

rate Eq. 8 constitute the main results of this paper.

EXAMPLE

To illustrate this result we assume that we are dealing

with nitrogen gas at room temperature and we consider a

20 cm long thin pipe with a radius of 5 mm. This leads to

a value of the diffusion constant D = 1.65 m2/s. Further-

more we assume distributed pumping with a pump strength

of s = 6.4 × 10−2 m2/s which could come from four radial

pumping slits with a length of 50 mm and a radius of 2 mm

spaced every 10 mm. Each of the slits has a conductance

of 1.6 × 10−4 m3/s and will limit the pumping capacity of

any sizeable pump at the remote end of the slits. For the

pump-down time scale we find τ = 1.2 ms.

In Fig. 2 we show the evolution of the longitudinal parti-

cle density dN/dz from 0.5 ms to 10 ms in steps of 0.5 ms

when the initial burst occurs a little to the right of the cen-

ter at z = 0.03 m. We clearly see that the distribution is

asymmetric and that the boundary conditions dN/dz = 0 at

z = ±l = ±0.1 m are fulfilled. In Fig. 3 we show the num-

ber of ejected particles for the same system. The number

ejected from the exit closer to the initial burst (solid) shows

a much stronger and slightly quicker signal compared to the

ejected rate from the remote exit (dashed) as can be intu-

itively expected.

In order to estimate the experimental predictability of the

method we repeated the analysis with the rather pessimistic

assumption that the pump speed s is reduced by 25 % to

account for beaming as discussed above and plot the corre-

sponding profiles as dotted lines in Fig. 3. The peaks of the

gas ejection rate are enhanced by about 10 % but the shape

is essentially unaffected. Then we repeated the calculation

with the equally pessimistic assumption that the diffusion

constant is reduced by 13 % and show the profiles as dot-

dashed lines in Fig. 3. We find that the profiles are less

peaked by approximately 15 % but, again, have essentially

the same shape as the unperturbed profiles. We also note

that the effect of reduced pump speed and reduced diffusion

have opposite effect and cancel to a large extent.

CONCLUSIONS

We derived a solution a for the time dependent pressure

profile and gas ejection rate from a pipe that is exposed to

a localized injection of a finite amount of gas. The analysis

is based on a diffusion model of the gas dynamics and we

estimated the limits of validity of the method to be on the 10

to 15 % level, mostly due to effect of beaming and variation

of the conductance, and thereby the diffusion constant, as a

function of the distance from the gas source.

This work is supported by the 7th European Framework

program EuCARD under grant number 227579.
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