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Abstract

A key ingredient for the Multi-Turn Extraction (MTE) at

the CERN Proton Synchrotron is the beam trapping in sta-

ble islands of transverse phase space. In a previous paper

a method allowing analytical estimation of the fraction of

beam trapped into resonance islands as a function of the

Hamiltonian parameters has been presented. Such a method

applies to one-degree of freedom models of betatronic mo-

tion. In this paper, the analysis is extended to the more re-

alistic and challenging case of two-degree of freedom sys-

tems, in which the interplay between the horizontal and ver-

tical motion is fully included. Numerical simulations are

presented and the results are discussed in detail.

INTRODUCTION

The proposal of splitting a single beam by crossing a non-

linear resonance to perform a multi-turn extraction from a

circular accelerator [1–3] has triggered a number of stud-

ies on the details of the splitting process. A key concept in

this novel beam manipulation is adiabaticity. From a mathe-

matical point of view the separatrix crossing always breaks

the adiabatic condition and new phenomena arise (see, e.g.,

Refs. [4–12] for an overview).

Numerical simulations of trapping phenomena are cus-

tomarily performed using simple polynomial maps. How-

ever, adiabatic theory has to be extended to be applied to

maps since rigorous results are not yet available. In Ref [13]

new studies are presented for the case of 2D systems de-

scribed by quasi-integrable polynomial maps. The main re-

sult is that a number of scaling laws can be derived, which

are robust and can be used in realistic systems. This is an

important aspect for applications.

The systems considered in [13] are still too simplified for

real-life applications. Therefore, in this paper we present a

first attempt of extending the proposed scaling laws to 4D

systems. The underlying idea is that even in a 4D system, as

long as one of the two degrees of freedom is far from low-

order resonances, the dynamics can be reduced to that of a

2D system, in which the additional degree of freedom can

be considered as a parameter. In this picture, the extension

of the results obtained for the pure 2D case is rather natural

and indeed the numerical results confirm this.

THE MODEL

We consider an adiabatically modulated four-

dimensional Hénon map that, on normalised co-ordinates

(x , x′, y, y′), describes the transverse motion of particles

∗ Also at EPFL, LPAP, CH-1015 Lausanne, Switzerland.

undergoing betatronic motion at successive cycles around

a circular accelerator in the presence of a sextupole and an

octupole [14]. The 4D Hénon map is given by
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where

R(ω1, ω2) =

(

R1 0

0 R2

)

Ri =

(

cosωi − sinωi

sinωi cosωi

)

. (2)

and one of the frequencies is modulated, i.e., ω1(n) =

ω1(0) + ∆ω n/T (T ≫ 1), with ω1(0) = π/2 + ǫ , i.e., close

to the fourth order resonance in the horizontal plane. The

Birkhoff normal forms [14] suggest the existence of an inte-

grable interpolating Hamiltonian for the frozen map (1)

H = H(ρ, θ) = (ǫ + h11ρ2) ρ + h20ρ
2 + Aρ2 cos 4θ, (3)

where (ρ, θ) and (ρ2, θ2) are action-angle variables. The

quantities h20, h11, A are known functions of the systems pa-

rameters, which are ǫ , ω2, κ, χ. χ represents the coupling

between the two degrees of freedom, while κ provides a

measure of the strength of the non-linear effects. We as-

sume that ω2 is far from any low-order resonance. To the

low order approximation, the action-angle coordinates are

related to the physical coordinates by the transformation

√
ρeiθ ≃ x − ix′,

√
ρ2e

iθ2 ≃ y − iy′. (4)

In presence of an adiabatic modulation, the interpolating

Hamiltonian cannot describe the evolution of the map (1),

but its action variables can be adiabatic invariants in each

phase space region without low order resonances. Even if a

rigorous theory for the adiabatic invariancy of 4D almost in-

tegrable symplectic maps is not yet available [15], it is plau-

sible to assume the ansatz that the dynamics of the slowly

modulated map (1) can be well described, in the considered

range of parameters, by a 2D modulated Hamiltonian sys-

tem that is parametrically dependent on a second integral

of motion ρ2. This means that the action ρ2 can be consid-

ered almost constant when the orbits are not too close to

a separatrix in the horizontal plane. Moreover, ρ2 changes

by a small quantity O(lnT/T ) when the separatrix crossing

occurs. This is confirmed by numerical simulations.

We consider −1 ≪ ǫ < 0, κ ∈ [−1.9, −1.1], χ ∈ (0, 1]

and ω2 ∈ [0, 2π], so that A < 0, h20 ≥ 0, h11 ≤ 0 and
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|A| ≪ h20 and Hamilton’s equations read

θ̇ =
∂H

∂ρ
= (ǫ + h11ρ2) + 2 (h20 + A cos 4θ) ρ (5)

ρ̇ = − ∂H
∂θ
= 4Aρ2 sin(4θ). (6)

Fixed points occur when θ̇ = ρ̇ = 0. That is, when either

θn =
nπ

4
, ρn =

− (ǫ + h11ρ2)

2 [h20 + (−1)nA]
(7)

or when

ρ = 0 and ǫ + h11ρ2 = 0. (8)

We have ǫ + h11ρ2 ≤ 0 so the latter case is either impossi-

ble or we have a line of fixed points at ρ = 0, which is a

degenerate case. The Hessian of H at (θn , ρn) is

H|(θn ,ρn) = 2(−1)n+1Aρ2
n[h20 + (−1)nA] i.e. (9)

H|(θ2n ,ρ2n) > 0 and H|(θ2n+1 ,ρ2n+1) < 0 . (10)

and the fixed points with even n are stable and those with

odd n are unstable. The oscillation frequency about the sta-

ble fixed points reads

ωe =

√
H =

√

−2Aρ2
n(h20 + A) =

√

− A(ǫ + h11ρ2)2

2(h20 + A)
.

whereas the energy level curves containing the unstable

fixed points define the separatrices. Denoting with ρ±(θ)

the parametrisation of the separatrix we have

ρ±(θ) = (ǫ + h11ρ2)
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and as |A| ≪ h20 the denominator is non-zero.

The separatrices divide phase space into an upper re-

gion,
{

(ρ, θ) ∈ R≥0 × S1 : ρ > ρ+(θ)
}

, a lower region, Σl ,
{

(ρ, θ) ∈ R≥0 × S1 : ρ < ρ−(θ)
}

and four islands, Σi . The

area of each region is given by

Σi = 4
− (ǫ + h11ρ2)
√

h2
20
− A2

tan−1
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. (13)

As we decrease ǫ , the area below the upper separatrix,

Σi + Σl is increasing. For ρ2 = 0, the area below the lower

separatrix, Σl is also increasing. However, for ρ2 > 0, Σl
is non-monotonic, decreasing at first and then increasing.

Figure 1 shows typical plots of Σi + Σl and Σl in each case.

This fact introduces an important difference in the evolution

of the islands’ surface between the 2D case, in which the

behaviour for monotonic variation of the parameters was

monotonic, and the 4D one, where the second degree of

freedom introduces a non-monotonic variation of Σl .

It is worth stressing that one of the conclusions of [13] is

that the existence of an interpolating Hamiltonian is essen-

tial to suggest scaling laws for the key quantities describ-

ing the trapping process even if an analytical evaluation of

its parameter by using perturbation theory [14] provides re-

sults not accurate enough to be compared with numerical

simulations.

E฀���
�	 E฀���
�	

Figure 1: Variation of Σi + Σl (dashed) and Σl (solid) for

κ = −1.1, χ = 0.5, ω2 = 0, ǫ ∈ [−2π 0.005, 0] (left:

ρ2 = 0, right ρ2 = 0.5.

SIMULATION OF TRAPPING FRACTION

We perform numerical simulations in which a large

number of particles follow the Hénon map on normalised

(x , x′, y, y′) phase space. To first order
√
ρeiθ = x− ix′ and

the distributions are defined in terms of
√
ρ. Furthermore,

a uniform distribution over a disk of radius ρc is assumed.

To ensure adiabaticity, the parameters should be varied

over a time T much longer than the oscillation period. How-

ever, since the period of an orbit close to the separatrix is

infinite, there is no finite value of T for which the motion

is adiabatic over the entire phase space. Nevertheless, for

sufficiently large T , the motion is adiabatic not too close to

the separatrix emanating from unstable fixed points.

Figure 2 shows the simulated trapping fractions, T ,

against ρc for
√
ρ2 c = 0.05 and 0.25 and for different values

of the time assumed to cross the fourth-order resonance.

As for the 2D case [13], T features and asymptotic be-

haviour as a function of the typical size of the particle dis-

tribution in the horizontal degree of freedom. Also, it is

clearly seen that T depends on ρ2 even if the overall be-

haviour remains the same. Furthermore, the longer is T the

larger is T , which reflects a better adiabaticity of the trap-

ping process. In the cases considered here the parameter

χ is relatively small, i.e., the coupling between the two de-

grees of freedom is not too large. On the other hand, ω2 is

not too far from the third-order resonance, which seems to

indicate that the behaviour observed for T is rather generic

and similar to what obtained for the 2D case [13].

The theory predicts (see Ref. [13] and references therein)

that the trapping fraction should have the form

T ∼ A +
B
√
T

(14)

where the parameters A, B depend on the detail of the sys-

tem under consideration. The form (14) fits the data remark-
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Figure 2: Simulated trapping fractions against ρc for κ =

−1.1, χ = 0.1,ω2 = 0.3,T = 1, 3, 10×104 (upper:
√
ρ2 c =

0.05, lower:
√
ρ2 c = 0.25).

ably well in many cases, as seen in Fig. 3, where the simu-

lation data are shown together with one such fit.

                    

Figure 3: Simulated trapping fraction T against the dura-

tion, T , of the Hamiltonian evolution for κ = −1.1, χ = 0.1,

ω2 = 0.3,
√
ρc = 0.25,

√
ρ2 c = 0.15. The best fit of the

form (14) is also shown. We find A = 0.205 and B = −2.65.

As for the 2D case [13] no trapping occurs for distribution

with sufficiently small ρc. The value of ρc at which trapping

begins is denoted by Rmin and Rmin → 0 as T → ∞. Figure

4 shows a typical plot from which we estimate Rmin. The

theory predicts that Rmin andT should be related by a simple

power law. Indeed, for a variation of ω1 near a resonance

2π
p

q
, Rmin ∝

(

∆ω1

T

)
2p
q . This gives the linear relationship

log Rmin =
2p

q
log

(

1

T

)

+ constant. (15)
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Figure 4: Simulated trapping fractions, T , against ρc for

κ = −1.1, χ = 0.1, ω2 = 0.3,
√
ρ2 c = 0.2 and T = 5000.

We estimate Rmin = 0.0024.

In the case of the fourth order resonance,
p

q
=

1
4
. In Fig. 5

the scaling law of Rmin is shown in double logarithmic scale.

The linear fit performed is also shown, and a remarkable

Ρ =

Ρ =

Ρ =

Ρ =

Figure 5: Power law relationship between Rmin and T for

κ = −1.1, χ = 0.1, ω2 = 0.3. There is no discernible

difference between curves with different values of ρ2 c.

agreement is visible, with a slope of 0.49, in agreement with

theory. It turns out that ρ2 c has very little effect on Rmin.

CONCLUSION

In this paper, a first analysis of scaling laws for trap-

ping due to crossing of a non-linear resonance for 4D quasi-

integrable maps has been presented and discussed.

These results follow a detailed characterisation of the 2D

case [13]. The numerical results seem to indicate that the

same scaling laws are describing the process in 2D and 4D,

at least whenever the dynamics of the second degree of free-

dom is not affected by low-order resonances. Such an as-

sumption is certainly very reasonable in view of applica-

tions in circular particle accelerators.

The next step will consist of extending the range of val-

ues used for the parameters considered for the 4D Hénon

map and to probe the impact of correction of the non-linear

coupling between the two degrees of freedom. Such a pa-

rameter is proportional to h1,1 and has been probed also in a

number of experimental tests in the CERN PS machine [16],

thus providing an interesting benchmark between theory

and simulations and real beam dynamics.
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