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Abstract
The High Luminosity upgrade of the Large Hadron Col-

lider (HL-LHC) aims to achieve an integrated luminosity of
250-300 fb−1 per year. This upgrade includes the use of crab
cavities to mitigate the geometric loss of luminosity arising
from the beam crossing angle. The tight space constraints at
the location of the cavities leads to cavity designs which are
axially non-symmetric and have a potentially significant ef-
fect on the long term dynamics and dynamic aperture of the
LHC. In this paper we present the current status of advanced
modelling of crab cavities.

INTRODUCTION
The Large Hadron Collider (LHC) will be upgraded in

the next decade, to increase the luminosity delivered to the
experiments to 3000 fb−1 over 10 years, giving between
250-300 fb−1 per year. The target peak luminosity in this
HL-LHC upgrade for the two high-luminosity experiments
ATLAS and CMS is 20 1034cm−2s−1 (levelled during a fill
to 5 1034cm−2s−1) [1]. The primary technology upgrades
forseen in this scenario include new high-field and large-
aperture inner triplet quadrupoles based on the Nb3Sn super-
conductor, use of crab cavities to recover head on collisions
and perform luminosity leveling at interaction point 1 (IP1)
and IP5, and various upgrade in the experiments to sustain
higher luminosity levels. For more details see [1]. In order to
fully benefit from upgraded optics, crab cavities are essential
to counteract the geometric luminosity reduction due to a
large crossing angle needed to overcome long range beam-
beam interactions.

The crab cavities are RF deflecting cavities operated at a
90◦ phase shift, giving a z-dependent transverse kick to the
particles in the bunch so that the bunch centre is undeflected
and the head/tail receive a transverse kick. The total effect
is a tilt of half the crossing angle (θ/2) with respect to the
uncrabbed motion at the IP. The crabbing arrangement in the
LHC is to have a local crab bump closed about the IP. The
crab cavities are to be located between the second separation
dipole and the next matching quadrupole, which provides
large β-functions and a phase advance to the IP of π/2 rad
to minimize the required voltage. Furthermore, in order to
close the crab orbit bump a second set of crab cavities after
the IP at π/2 phase advance is needed.
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There are currently many studies of crab cavity dynam-
ics in the LHC, including long term stability studies [2, 3]
and machine protection studies [4]. These calculations and
simulations have required new techniques to accurately and
efficiently model the dynamics in the crab cavities, often
trading accuracy for computational speed and crab cavity
models are crucial for understanding these new beam dyna-
maical effects. In this paper we present the current status
of advanced modelling of crab cavities and consider the im-
pact of the crab cavity on the LHC proton beam, involving
multiple approaches and state of the art proton dynamics
calculations. We present two models : the first is based on
a multipole expansion of the integrated kick. This gives
a quick and symplectic model. with the cavity described
by a series of normal and skew multipoles. The second
model is a potentially more accurate model using fitted vec-
tor potentials to model a thick crab cavity and expressing the
transformation across the cavity in terms of a Taylor map
derived from a symplectic integrator and a differential alge-
bra approach. The cost is a very small symplectic error and
increased speed of computation [5]. We shall present the
two contrasting models and consider their relative merits.

THIN LENS RF MULTIPOLES
In this section we shall show that it is possible to model

a crab cavity z-dependent kick with multipole coefficients
extracted from EM simulations. The first approximation
used is to represent the crab cavities by two drifts around
a thin layer with lumped integrated kick. In this case it is
assumed that the particle trajectory is not affected by the field
while traversing the cavity and a kick is given to the particle
at the centre of the cavity. Secondly, we assume that the
trajectory is a straight line parallel to z (axial approximation).
This implies that any Bs is neglected. Assuming these two
approximations we can write for x (similar to y) thin lens
kicks describing a change in transverse momentum derivable
from the Hamiltonian,

H (x, y, z) = −<

∞∑
n=0

Wn (z)(x + iy)n

δ(s), (1)

where Wn (z) is a z-dependent coefficient obtaineable from
the integrated vector potential. This gives the longitudinal
and transverse kicks as,
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∆ps = <

∞∑
n=0

W ′n (z)(x + iy)n


(2)

∆px + i∆py =
∞∑
n=1

Wn (z)
(x + iy)n−1

n
. (3)

The strong non-axially symmetric shape of the compact
cavities leads to a transverse dependency of the transverse
kicks applied by the operating dipole mode. This effect can
be described in a similar way as it is done in the analysis
of static magnetic fields by means of an expansion of the
transverse and longitudinal kicks, associated with the EM
fields of the cavities, in terms of azimuthal multipoles [6, 7].
Assuming harmonic time dependence of complex EM fields
and that the path through the cavity is rigid, the integrated
vector potential can be reduced to the following form,

∫ L

0
Azds =

N∑
n=1

1
n
ρn (bn cos(nφ) + an sin(nφ)) (4)

where bn and an are the normal and skew multipolar ex-
pansion coefficients of the complex EM fields, analogous
to the description used for magnets but complex instead of
real and N is the order of truncation of the azimuthal de-
composition. This integrated vector potential is expressed
in a thin-lens form, with no s dependence, and an and bn
are the integrated values over the length of the cavity. From
the vector potential in this form the momentum change ap-
plied to a particle can be calculated in complex form and a
momemtum kick applied to the beam.
The multipole coefficients are computed directly from

meshed EM field data obtained from codes such as HFSS
and a full set of coefficients can be found in [3]. There are
mutiple ways to compute the normal and skew coefficents
for the cavity, which we now describe.

Lorentz Force Starting from the general form of the
Lorenz force law (LF) the transverse component of the force
experienced by a particle moving along z-axis is given by,

F⊥ (ρ,φ, s) = q
[
E⊥ + (~v × ~B)⊥

]
exp

(
i
ωs
v

)
, (5)

where ρ, φ and s are cylindrical coordinates, q is the particle
charge and ~E and ~B are the complex electric and magnetic
fields respectively. The momentum kick can be found from
the force by integrating over the length of the cavity L, lead-
ing to explicit expressions for the multipole coefficients,

an = 1
qc

1
π

∫ π

−π
1

ρn−1 sin(nφ)
∫ L

0 Fρ (ρ,φ, s) ds dφ (6)

bn = 1
qc

1
π

∫ π

−π
1

ρn−1 cos(nφ)
∫ L

0 Fρ (ρ,φ, s) ds dφ. (7)

This method requires knowledge of the electric and magnetic
fields within the cavity.

Panofsky-Wenzel The Panofsky-Wenzel (PW) theo-
rem [8] is a relationship between transverse and longitudinal
kicks allowing the multipolar expansion coefficients calcula-
tion from the longitudinal electric field. Assuming the ultra
relativistic case (v → c) and no fringe fields beyond the
edges of the integrable region [0,L], the momentum change
can be expressed in terms of Ez only, leading to expres-
sions for the multipolar components in terms of a Fourier
transformation of the electric field,

an = in
ω

1
π

∫ π

−π
1
ρn sin(nφ)

∫ L

0 ei
ω
c sEz (ρ,φ, s) ds dφ (8)

bn = in
ω

1
π

∫ π

−π
1
ρn cos(nφ)

∫ L

0 ei
ω
c sEz (ρ,φ, s) ds dφ. (9)

The multipoles obtained from this method agree with those
obtained from the LF method [3].

TAYLOR MAP CAVITY MODELS
Producing an analytical representation of the field allows

for a Hamiltonian-based analysis of the particle dynamics
of the operating mode. The field fitting method [9] assumes
the vacuum form of Maxwell’s equations is valid for a finite
volume through the length of the cavity and that the field
obeys the Helmholtz equation.
The longitudinal field may be expressed as an infinite

series of cylindrical harmonic modes, where a boundary is
chosen such that the harmonic functions describe the field
within a cylinder running the length of the cavity. The field
fitting method [9] expresses the field (and the associated
vector potential) analytically, given explicit field data on the
surface of the cylinder. Further details can be found in [2,9].
The electric field ~E contained within the vacuum of an RF
cavity satisfies the wave equation,

∇2 ~E −
1
c2
∂2 ~E
∂t2
= 0. (10)

It is assumed that for a standing wave mode in a cavity, the
~E field has a harmonic time dependence, and the spatial and
time dependent field components are separable, so that the
spatial part obeys the vector Helmholtz equation

∇2 ~E (l ) + k2l ~E
(l ) = 0, (11)

where kl ≡ ωl/c. The electric and magnetic fields, and
hence the vector potential, can be expressed completely in
terms of a set of functions (ẽn (k), f̃n (k), β̃n (k) and α̃n (k),
where k is a Fourier variable and n a mode number). These
functions are obtainable from knowledge of the field on the
surface of a cylinder inscribed inside the cavity volume and
give access to the electric and magnetic fields for ρ < R.
Figure 1 gives an example of the achievable fit, showing

the relative fitting error of the longitudinal electric field in
the 4-rod crab cavity [10]. The solid line is an interpolation
of the field data, the squares show the fitted electric field
using the methods described in this section and the crosses
show a Taylor expansion of the fitted fields equations [2]
suitable for further beam dynamics studies.
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Figure 1: The residual error of the fitted 4-rod crab cavity
longitudinal electric field.

The crab cavity Taylor maps are produced using an ex-
plicit symplectic integrator developed by Wu, Forest, and
Robin [11] (WFR) implemented in a diffential algebra code.
The WFR integrator was developed for an s dependent
Hamiltonian for charged particles moving through an electro-
magnetic field. The Hamiltonian takes the following form,

H = −

√(
1
β0

+ δ
)2
− (px − ax )2 − (py − ay )2 − 1

γ20β
2
0

−as + δ
β0

+ ps (12)

where ax,y,s (x, y, z, s) are the normalised vector potentials,
x, px , y, py are the canonical variables describing transverse
positions and conjugate momenta, z and δ are the relative
position to the synchronous particle and relative energy. γ0
and β0 are the reference relativistic factors corresponding to
the reference momentum. The Hamiltonian is extended to
four conjugate pairs, with the fourth {s,ps } allowing motion
along the reference trajectory through an s dependent vector
field [11]. A Taylor map expresses the relationship between
the initial and final state variables in the form of a Taylor
series,

x f
k
= fk (xi1, . . . , x

i
6), (13)

where,

fk (xi1, . . . , x
i
6) =

∑6
j i j=Order∑
i1, ..., i6=0

Ak, i1, ..., i6

6∏
j=1

(xij )
i j , (14)

where the order of a Taylor map is determined by the largest
total power of any term in the series. xij are the initial val-
ues of the canonical variables, i j are the exponents, and
Ak, i1 ...i6 is the coefficient of term defined by the exponents
in the series fk . To calculate a Taylor map the numerical
integration must be carried out using a differential algebra
library, which considers all variables as a truncated power
series. The WFR integrator [11] is then used to integrate
through the analytic vector potential.

Truncating the Taylor map introduces a symplectic error,
which leads to a failure to conserve the phase space volume
during long term simulations of particle motion. The amount
of error is expressed through the coefficients of the E matrix,

E(~xi ) = JT (~xi ) · S · J (~xi ) − S. (15)

where J is the Jacobian of the map and S is the standard
symplectic matrix. For a Taylor map (step size of 0.01 m)

1 2 3 4 5 6 7 8

-25

-20

-15

Order

lo
g

1
0
ÈE
È

Figure 2: The symplectic error of the crab cavity Taylor map
as a function of series order.

trucated at order eight, the symplectic error up to eighth
order is shown in Fig. 2, evaluated at a single point in phase
space. The first order map has least symplectic error as
its only source of error comes from the machine precision
(double precision) rather than the series truncation, hence
the symplectic error is at the level of 10−15. Note the an

and bn coefficients of the multipole method can be obtained
from field fitting, and show agreement, as discussed in [3].

MERITS OF THE APPOACHES AND
CONCLUSION

We have described the approaches taken to model crab
cavities for the LHC upgrade in recent work. The first is
built around a single thin lens cavity kick obtained from
two different ways from integrals over the cavity field. The
resulting cavity multipoles assume ultra-relativistic rigid
beams and a beam parallel to the axis. The full set of cavity
multipoles obtained from all methods and for all cavities can
be found in [3]. This approach ensures a fully symplectic
cavity model and has the virtue of low computational cost.

The second method using the field fitting methods of [9]
to construct an analytic vector potential for the crab cavity
directly from EM field data. A symplectic integrator and
a differential algebra code is used to represent the transfor-
mation of the crab cavity as a Taylor map, giving accurate
dynamics [5] but at the cost of a symplectic error on the
level of machine precision due to the truncation of the Tay-
lor series. Detailed studies comparing the two methods have
been performed in [2].
In conclusion, there has been a lot of work on the mod-

elling and dynamics of crab cavities in the LHC. This paper
describes the different cavity modelling approaches used in
this work and contrasts the two. The use of these models for
long term stability in the LHC is described in [2].
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