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Abstract 
In this report we derive rigorous and approximate 

dispersion relations for the round resistive thin-wall 
waveguide. The features of the distributions of dispersion 
curves of the waveguide axisymmetric TM modes are 
obtained. Cases of splitting and degeneracy of modes 
under consideration are detected and regularities of their 
behaviours are established.  

INTRODUCTION 
Thin-walled metal waveguides were considered, as for 

example, in [1]. The impedance properties of such 
waveguides were studied and in results of which some of 
their features were revealed. Meanwhile, the dispersion 
characteristics of such waveguides are not enough 
investigated. Typically, the dispersion relations for 
waveguides were used in the construction of their surface 
impedance [2] underlying the approximate solutions for 
the electromagnetic fields propagation in waveguides 
with thick outer walls and various thin inner coating 
(dielectric, rough, metal). For thin single-layer waveguide 
the concept of impedance boundary conditions is 
inapplicable, however, it is important to know its 
properties for understanding the mechanisms of wave 
propagation and, in particular, for the decomposition of 
the fields on the eigenmodes in such waveguides. It will 
be useful in determining the maximum possible thickness 
of the undulator vacuum chambers and characteristics of 
the external radiation, for example, with a view to 
shielding. 

 Metal waveguides may be named thin walled if along 
with a small wall thickness the metal filling of walls has a 
low conductivity. For sufficiently high conductivity even 
at low wall thickness, the waveguide behaves as a thick-
walled on the most part of the frequency spectrum except 
at very low frequencies in which the skin layer is thicker 
than the wall and where the notion of the skin layer is not 
applicable. In turn, the thick-walled waveguide with walls 
of low conductivity may possess all the properties of thin-
wall waveguide.  
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Figure 1: Geometry of problem. 

In this paper we consider a round metallic waveguide 
with an inner radius a, wall thickness d and outer radius 

a1=a+d (Fig.1). Permittivity of a non-magnetic metal 
(magnetic permeability metal is magnetic permeability of 
vacuum 0) wall determined by the conductivity of the 
metal and dielectric permittivity of vacuum 0 : 

 j 0 . 

DISPERSION RELATIONS 
Fundamental solutions of the homogeneous Maxwell 

equations of  the described structure are searched using 
cross-linking of partial solutions for each area of the 
waveguide, marked in Figure 1: in the internal region of 
the waveguide (I - a vacuum) in the metal wall (II - metal) 
and in the region outside the waveguide (III - vacuum). 
Non-zero tangential electric and magnetic components of 
axisymmetric partial solutions for each area are presented 
as follows: 
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In (1):  1200Z , m0 , 2
001 mm j   - 

transverse eigenvalues (wave numbers) of TM0m mode 
 ,3,2,1m  in a vacuum and in the metal wall, 

respectively and mF  the transverse propagation factor. 

Values of the tangential field components at the 
boundaries of each of the areas should be equal to each 
other: 
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The result is a homogeneous linear system of four 

equations with four unknown coefficients (Am, Bm, Cm and 
Dm): 
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Here we have introduced the notations: mm a 00   , 

110  amm  . The existence of non-trivial solutions of 

(3) conditioned by vanishing of its determinant: 
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where  
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For large values of the arguments, equation (4) can be 
rewritten approximately  aab 1 : 
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and for the approximation of  j1  and 

01  jm   one obtains: 
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Here 0ks  the dimensionless wavenumber, 

31
0

2
0 )2( cas   the characteristic size of unbounded 

resistive tube [3] and 2
0sad . The frequency range of 

applicability of equation (7) is determined by double 
inequality: 
 

 0
1

0
2 )( ZkZa  .    (8) 

 
For the small wall thickness the further simplification of 
the equation (14) is possible: 
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MODE TM01 
Equations (6)-(9) have a countable number of 

solutions that are continuous functions defined by initial 
conditions mm j00    ,3,2,1m , where mj0  - the 

roots of the Bessel function of the first kind and zero 
order    000 mjJ .  

 

Figure 2: The frequency dependence of the real 
component of the transverse eigenvalues; the waveguide 
radius a = 1cm, wall thickness d=1m; solid curves: 

=4.0753 m-1; dashed curves:  =105im-1, 1-4, 
i=1,2,3,4 (blue); 5-11, i=5,6,7,8,9,10,100 
(red). 

 
Examples of the solutions of the dispersion equation 

(6) for the fundamental mode at a fixed wall thickness for 
different values of the conductivity of the wall material 
are shown in Figure 2. 
 

Figure 3: Dependence of the real part of transverse 
eigenvalues of a thin-walled circular metal waveguide 
from the dimensionless wavenumber   (mode TM01); 
solutions of equation (9) (dashed lines), corresponding 
solution of equation (6) for a = 1cm and  d =1m; solid 
lines: (red - upper branch, blue - lower branch) correspond 
to the critical value of the parameter; ; branching 
point . 

 
From the Figure one can trace the transformation of the 

dispersion curves as a function of the change in 
conductivity of the wall material.  

It should be initially noted that the presence of the 
phenomenon of mode degeneration on the fixed value of 
the conductivity, which is manifested in the bifurcation 
(splitting) of the dispersion curve with a branch point at  
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0ff   THzf 6.10   and becomes two-valued function 

when 0ff  . The critical (branching) dispersion curve 

 is represented in Figure as a solid one: red (upper 
brunch) and blue (lower brunch). Behavior of the 
dispersion curves at  and  is significantly 
different. In the first case, with increasing frequency the 
dispersion curves tend to the value j11 (the first root of the 
Bessel function )(1 xJ ). In the second case, the real part 

of the transverse eigenvalue tends to infinity (similarly to 
the case 10  (Fig.3) of a single-layer unbounded 
resistive waveguide [4]). Transition from the first to the 
second case at   occurs abruptly. 

The common nature of the phenomenon of splitting or 
degeneracy of the dispersion curve which is due to the 
finite wall thickness appears from dispersion equation 
written in approximations (7) or (9). In particular, in the 
form of (9) the dispersion equation has a universal 
character: by varying the parameter  , one can get the 
dispersion characteristics for the arbitrary combinations 
of a, d, and . Note that parameters  and s0 used in this 
formula, have been used previously only for the thick-
walled waveguides [3]. In the approximation (9) 
branching point on the dispersion curve occurs when 
, where     (Fig. 3). 

HIGH AXISYMMETRIC MODES 
Equations (6) - (9) allow us to determine the dispersion 

curves for the higher axisymmetric TM modes. Figure 4 
shows the curves for the critical values of the parameter 
  for the first five axisymmetric modes. 

As can be seen from this Figure, the higher modes, in 
contrast to the main TM01 mode, have two branch points 
( and , in Tab.1) and in pairs are decomposed into 
four branches. The upper branch of each pair with 
increasing frequency tends to infinity. Lower branches at 
high frequency limit tend to the various finite eigenvalues 

ij1  equal to the roots of first order Bessel function. Two 

branch points of consecutive modes coincide with each 
other (see Fig. 4 and Table 1). Thus, the branching point 
of TM01 mode is cincided with the lower branching point 
of TM02 mode, while the upper branching point of this 
mode coincides with the lower branching point of the 
next, TM03 mode, and so on (Table 1). Branches of the 
dispersion curves of two consecutive modes with 
coincided branch points also pairwise overlap. Thus, 
when 2,1   in the frequency ranges 2,1   there is a 

merging of the respective branches of the dispersion 
curves of two consecutive mode: for example, the upper 
branch of the upper pair of TM02 mode merges with the 
upper branch of the lower pair of mode TM03, i.e., when 

2,1   and at the critical value of  the 

degeneration (merger) of these two modes takes place. 

 

Figure 4: The real components of the dispersion curves 
for the first five axisymmetric modes versus 
dimensionless wavenumber ; mode with an odd index i 
(red, solid); mode with even index i (black, dotted). 

 

Table 1: Critical Parameters 

Mode    

TM01 0.8385  3.65  

TM02 0.8387 0.5878 3.65 4.49 

TM03 0.5878 0.4754 4.49 5.15 

TM04 0.4754 0.4073 5.15 5.70 

TM05 0.4073 0.3603 5.70 6.19 

CONCLUSION     
The phenomenon of splitting and degeneration of 

axisymmetric transverse magnetic (TM) eigenmodes of a 
thin-walled circular metallic waveguide is described. The 
phenomenon is due to the finite thickness of the wall of 
the waveguide and occurs at certain critical values of 
conductivity of the metal wall. Degeneration of two 
consecutive modes occurs due to coincidence of critical 
values of conductivity (parameters 2,1 ) for these two 

modes. 
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