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Abstract

The HL-LHC Upgrade project relies on large aperture

magnets (mainly the inner Triplet and the separation dipole

D1). The beam is much more sensitive to non-linear pertur-

bations in this region, such as those induced by the fringe

fields of the low-beta quadrupoles. Different tracking mod-

els are compared in order to provide a numerical estimate of

the impact of fringe fields for the actual design of the inner

triplet quadrupoles. The implementation of the fringe fields

in SixTrack, to be used for dynamic apertures studies, is also

discussed.

INTRODUCTION

In order to increase the luminosity by a factor 10 a small

β∗ value is required at the two high luminosity Interaction

Points (IPs). Additionally also an increase of beam bright-

ness is required [1]. As a consequence the beam sizes in-

crease in the inner triplet region. Moreover due to the cross-

ing angle, the two beams enter off axis in the triplet, which

implies that the beams are much more sensitive to non linear

perturbations in this region. Analytical evaluations of de-

tuning with amplitude and chromatic effects induced by the

fringe fields of the inner triplet have shown that the effect is

small but not negligible [2]. Therefore, the effect on long-

term beam dynamics should be evaluated via symplectic

tracking simulations. We present here an implementation

of the method proposed by Venturini and Dragt [3], which

uses 3D magnetic field data to compute the transfer map to

be used in the tracking simulations. The application to the

current design of the inner triplet quadrupole is presented,

focusing on the source of errors in the method and on the

comparison with the leading order analytical model and a

symplectic 4th order integrator. Finally the possible im-

plementation of this method in SixTrack [4–6] is briefly

discussed.

MAGNETIC FIELD MAPS

The magnetic field data we use in this analysis have been

computed by CERN magnet group [7]. The data correspond

to the end region of a prototype model. They are provided

on a 3D Cartesian grid of step 3 mm in the three dimensions

and with z values which start at the nominal field value and

ends where the field values are near zero (order of 10−5).

∗ The research leading to these results has received funding from the Euro-

pean Commission under the FP7 project HiLumi LHC, GA no. 284404,

co-funded by the DoE, USA and KEK, Japan.

This prototype design has two symmetric ends, although

the actual magnets have asymmetric ends due to the cur-

rent leads. They generate skew components on one end of

the quadrupole and they increase the residual higher order

multipoles in the two fringe field regions.

DESCRIPTION OF THE METHOD

In order to evaluate the non linear fringe field effect on

the long term beam dynamics, a symplectic transfer map

of the quadrupoles including the fringe region is required.

The method we have implemented was first proposed by

Venturini and Dragt [3]. It consists in three steps of cal-

culation. First the field harmonics are calculated using the

3D magnetic field data computed by 3D FEM codes. Then,

the vector potential of the quadrupole is computed using a

Fourier and anti-Fourier transform of the field harmonics

to calculate the generalized gradients. Finally, the transfer

map of the z-dependent Hamiltonian of the quadrupole is

evaluated through a second order symplectic integrator com-

puted with Lie Algebra transformations. In the following,

the main source of errors of the three steps of calculation

and the main features of the method are discussed.

The major source of error in the harmonics analysis of 3D

magnetic field data distributed on a Cartesian grid comes

from the interpolation. We have compared two types of

interpolator: a quadratic interpolator with weighted coeffi-

cients, which is usually implemented in PIC codes, and a

cubic interpolator so called cubic Hermite spline or cubic

Hermite interpolator [8]. The test field used to evaluate the

errors is generated as a superposition of harmonics, analyti-

cally calculated. The value of the higher order harmonics

are attenuated with respect to the lower ones, to simulate

the different content of harmonics usually participating in a

magnetic field. Each of the harmonics is shaped with a Gaus-

sian form factor in z, to simulate the fringe field region. We

have selected the cubic Hermite Spline Interpolator (HSI)

because it gives a smaller error on the calculation of the

lower order harmonics. Using this interpolator and the test

field we have analyzed the resolution of the HSI as func-

tion of the grid steps in the three planes. The study shows

that there is a smooth dependence with the grid step. The

relative error in the reconstruction of the main quadrupole

component with the HSI is always less than 10−5 and it in-

creases up to 10−2 for the high order harmonics. A grid

step of 3 mm in the three coordinates is a good compromise

between computational speed and precision.

5th International Particle Accelerator Conference IPAC2014, Dresden, Germany JACoW Publishing
ISBN: 978-3-95450-132-8 doi:10.18429/JACoW-IPAC2014-TUPRO002

01 Circular and Linear Colliders
A01 Hadron Colliders

TUPRO002
993

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

14
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



The three components of the quadrupole vector potential

can be written as expansions of normal and of skew multi-

poles. Each of the multipole can be expanded in terms of

x,y homogeneous polynomials and z-dependent coefficients

C
[m]
n (z), called generalized gradients. It can be demonstrated

that these coefficients can be calculated using the multipolar

expansion of the magnetic field [9]:

C[m]
n (z) = f (n,m)

∫

∞

−∞

eikz kn+m−1

I
′

n(kRan .)
B̃n(Ran . , k)dk (1)

where, f (n,m) = im

2nn!
√

2π
, I

′

n(kRan .) is the derivative of

the generalized Bessel functions, B̃n(Ran . , k) is the Fourier

transform of the harmonic coefficients and Ran . is the radius

used in the Harmonics Analysis calculation (50 mm in this

case). The computation of this integral is non trivial when

using discrete data, as in the case of the harmonics calcu-

lated from the magnetic field data. To solve the two Fourier

integrals we use the method of Filon-Spline, which is an ex-

tension of the Filon method using a spline interpolation [10].

Special attention needs to be considered in the choice of

the step in the frequency k and in the boundary conditions

of the spline used to interpolate the function. Once these

parameters have been fixed we obtain an analytical formula

of which we know the Fourier transform, that approximates

our data. We have applied the method to the harmonics

calculated from the 3D magnetic field and studied the error

in the reconstruction of the harmonics. Figure 1 shows the
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Figure 1: Difference between the calculated harmonics and the

reconstructed harmonics for a grid step of 3 mm in the three di-

mensions, considering 16 derivatives in the generalized gradients

computation.

difference between the harmonics calculated from the mag-

netic field data and the harmonics reconstructed from the

generalized gradients, as:

Bn(r , z) =
∑

m

(n + 2m)
(−1)mn!

4mm!(n + m)!
rn+2m−1C[2m]

n (z)

(2)

calculated summing up to 16 derivatives in the generalized

gradients calculation. The absolute error on the reconstruc-

tion of the harmonics is 10−6 or less, except at the boundaries

of the field map and in the region of the biggest slope of the

field. At the boundary, the error in the reconstruction of the

field reaches the same order of magnitude as the field itself

(10−5) this is known as Gibbs phenomena and can be cured

without considering the first and last point in the tracking.

The error in the region of biggest slope is related to the num-

ber of derivatives we use in the computation of the gradients,

as shown in Fig. 2. In the following we will consider 16
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Figure 2: Maximum difference between the calculated harmonics

and the reconstructed harmonics as a function of the number of

derivatives, for grid steps of 3 mm in the three dimensions.

derivatives in the computation of the generalized gradients

(more derivatives in fact would slow the tracking without

improving its precision).

In order to describe the motion of the particles in a mag-

netic system the transfer map of the system is needed and

in the case of multi-turn simulations this map needs to be

symplectic. Using Lie Algebra formalism, this transfer map

(which represents the equation of motion of the particle for

the system under consideration) takes the following expres-

sion:

M(∆σ) = exp(−L : K :) (3)

where L and K are the length and the Hamiltonian of the

system. In order to have the explicit dependence on z in

the Hamiltonian we consider the 8 dimensions Hamiltonian

given by Forest et al. in Ref. [11]. Since the expression

of the Hamiltonian contains the terms
(

px ,y − ax ,y
)2

, the

system is not exactly solvable, so we use a transfer map

approximated to the second order:

M(∆σ) = exp(−∆σ
2

: K1 :) exp(−∆σ
2

: K2 :)

exp(−∆σ
2

: K3) exp(−∆σ : K4 :) exp(−∆σ
2

: K3 :)

exp(−∆σ
2

: K2 :) exp(−∆σ
2

: K1 :) +O(∆σ3)

=M2 +O(∆σ3).

(4)

where K = K1 + K2 + K3 + K4, K1 = pz − δ, K2 = az ,

K3 =
(px−ax )2

2(1+δ)
, K4 =

(py−ay )2

2(1+δ)
, : K : f =< K , f > is the

Lie operator defined by the Poisson brackets [12], and we

have used the generating function given in [11] to simplify

the terms K3 and K4. They have been implemented in a

Fortran90 code which reads a table of the computed vector

potential, expressed as product of the generalized gradients

and monomials in the x , y coordinates, for each step in z.
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VALIDATION OF THE METHOD AND

DISCUSSION

In order to validate the method we compare this symplec-

tic integrator, that for brevity we will call Lie Tracking with

a symplectic 4th order integrator and with leading order an-

alytical kicks computed by Forest and Milutinovic in [13].

We track a single particle with different initial offset and zero

angular deviation trough a single quadrupole and we look

at the non-linear part of the final py coordinate (subtracting

the linear contribution of the main quadrupole component)

as a function of the initial offset. First we compared with

a symplecting integrator, implemented for Linear Collid-

ers interaction region studies [14]. It consists in interleaved

drifts and kicks, accurately chosen to obtain a symplectic 4th

order integrator [15], the kicks are given by the Lorenz force,

computed interpolating the values of external 3D magnetic

field data. We have used here the same HSI interpolator

used previously for the harmonic analysis. Figure 3 shows
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Figure 3: Non-linear part of py after tracking particles with differ-

ent offsets in a single quadrupole. Lie Tracking is compared with

a fourth order symplectic integrator.

the very good agreement of the two different tracking pro-

cedures, when using up to 18 harmonics to reconstruct the

Vector Potential in the Lie Tracking. It proves the ability

of the two tracking methods to describe effects at the nano

scale. Figure 4 shows the non linear fringe field effect given
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Figure 4: Non-linear part of py after tracking particles with dif-

ferent offsets in a single quadrupole. Lie Tracking of the main

quadrupole component only is compared with a analytical leading

order kicks.

by the Lie Tracking using the main quadrupole component

of field only and by the leading order hard edge fringe field

model given in [13]. There is a good agreement between the

two models up to ±1.5 cm, but for larger initial offset values

the Forest model underestimates the non linear fringe field

effect of a factor 2 for this quadrupole design. This effect is

due to the shape of the fringe field ends under study, which

cannot be explained considering the lowest order derivative

of the gradients only. In fact, to reduce the error of the field

reconstruction in the region with biggest slope we have used

up to 16 derivatives of the generalized gradients coefficients.

By comparing Fig. 3 to Fig. 4 we see that the higher or-

der components of the field in the fringe field increase the

non-linear effect by one order of magnitude.

Therefore, to evaluate in a realistic way the non linear

fringe field effects on the long term beam dynamics, a sym-

plectic tracking needs to be included in a tracking code,

like SixTrack. The force of the Lie Tracking we have im-

plemented consists in the possibilities to control the field

harmonics used in the simulations. Each field component

can be switched on and off easily in the calculation of the

generalized gradients. Moreover if the symplectic integrator

is accurately written in the same coordinates as SixTrack

the tracking in the central part of the quadrupole can be

preserved as is, and only the fringe field region treated via

the Lie Algebra tracking.

D(−Ld)I (L f f )Q
−1(Lq)Q(L0)Q−1(Lq)I (L f f )D(−Ld) (5)

Equation 5 shows a possible scheme of integration of the Lie

Tracking with an existing hard edge model of the quadrupole.

In order to avoid over strength counting an equivalent anti

quadrupole needs to be subtracted after the fringe tracking,

which needs to be extended up to the z where the Bz com-

ponent is vanishing again, before entering the central part.

The limit of this method is that the computation of the gen-

eralized gradients, using the harmonics analysis of the field

on a circle, is valid only inside the radius of analysis. As

a consequence any DA calculation will be valid inside this

region only.

CONCLUSION

We have implemented a method to compute a transfer map

of a z-dependent Hamiltonian using 3D magnetic field data,

to calculate the vector potential, and Lie Algebra transforma-

tion, to derive the symplectic integrator (transfer map). We

have validated the method by comparing it with a 4th order

symplectic integrator that uses the Lorenz force to evaluate

the kick strength. By comparing the tracking we have im-

plemented with analytical leading order fringe field model

given by Forest-Milutinovic, we have found a discrepancy at

large particle amplitudes due to the higher order derivatives

needed to describe the fringe field shape of the magnet under

study. Finally a possible implementation of the method in

tracking code used for long term beam dynamics studies,

like SixTrack, as been briefly discussed.
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