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Abstract

In this paper, in preparation to the European XFEL com-

missioning, we consider the procedure of calculation of fo-

cusing properties of chicane-type bunch compressors and

planar undulators using 2D magnetic field model (approxi-

mation of infinitely wide poles).

INTRODUCTION

In the study of the beam dynamics in undulator and wig-

gler magnetic fields it is a long-established practice to de-

scribe motion of particles not in the coordinate system at-

tached to the wiggling trajectory of the beam centroid but in

a (straight) Cartesian coordinate system in which equations

of motion are essentially simpler and analytical or numeri-

cal analysis of their properties is more straightforward. In

this paper we suggest to extend this practice on the study of

the beam dynamics in an arbitrary planar dipole field includ-

ing particle motion in the chicane-type bunch compressors

with the benefit of the possibility of an accurate and, in the

same time, relatively simple treatment of the dipole fringe

effects. It is clear that this extension requires to go beyond

the usual approximations well accepted for the description

of the motion inside an undulator including usage of only

the first and the second field integrals for the description

of the beam centroid oscillations, averaging over a (short)

undulator period in order to account for the natural undula-

tor focusing and etc. So, as a first step in this direction, we

provide exact (in the form of series) formulas for the mo-

tion of the beam centroid and for the nonlinear transverse

and longitudinal dispersions, and derive equations of linear

betatron oscillations.

EQUATIONS OF MOTION

We describe the particle motion in a Cartesian coordi-

nate system with x, y and z as the horizontal, vertical and

longitudinal direction, respectively. We assume that the lon-

gitudinal coordinate z can be introduced as an independent

variable, take a pseudoparticle flying along the z-axis in the

field free space as the reference particle, and use a complete

set of symplectic variables u = (x,px , y,py ,σ,ε)⊤ as parti-

cle coordinates. In this set px and py are transverse canoni-

cal monenta scaled with the constant kinetic momentum of

the reference particle p0 and the variables σ and ε which

describe the longitudinal dynamics are

σ = c β0 (t0 − t), ε = (E − E0) / (β2
0 E0), (1)

where E0, β0 and t0 = t0(z) are the energy of the reference

particle, its velocity in terms of the speed of light c and its

arrival time at a certain position z, respectively. In these
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variables, the Hamiltonian describing the motion of a parti-

cle in a static magnetic field takes on the form

H (x, px , y, py , σ, ε)

= ε −

√

æ2(ε) − (px − Āx )2 − (py − Āy )2 − Āz , (2)

where Ā = (e/p0) A is the normalized vector potential and

æ(ε) =

√

(1 + ε)2 − (ε/γ0)2
=

√

1 + 2ε + β2
0
ε2. (3)

In order to specify the vector potential A we have to spec-

ify first the magnetic field B = (Bx ,By ,Bz )⊤, which in a

current-free region can be described in terms of a scalar po-

tential Ψ (with B = ∇Ψ) that satisfies the Laplace equation.

Because we assume that our magnetic system is built from

optical elements such that they are symmetric about the hor-

izontal midplane y = 0 and that the field is homogeneous

along the x-axis, it follows that the potential Ψ is an odd

function of y

Ψ(x, y, z) = −Ψ(x, −y, z) (4)

and is independent from x. These properties of the scalar

potential are already sufficient for the specification of the

vector potential, which we will take in the following form

Ax = 0, Ay = x
∂Ψ

∂z
, Az = −x

∂Ψ

∂y
. (5)

Note that expressing the potential Ψ as a formal power se-

ries in y one obtains

Ψ =

∞
∑

m = 0

(−1)m b
[2m]

0
(z)

y
2m+1

(2m + 1)!

= b0(z) y − b
[2]

0
(z)

y
3

6
+ b

[4]

0
(z)

y
5

120
+ . . . , (6)

where b0(z) is distribution of the vertical magnetic field in

the horizontal midplane and the index [n] indicates the n-th

derivative with respect to the longitudinal variable z.

MOTION IN THE SYMMETRY PLANE

Due to the symmetry relation (4) the magnetic field is per-

pendicular to the horizontal midplane y = 0, which means

that the particle remains in this plane if at the beginning its

vertical position and kinematic momentum were equal to

zero, that is

y = py − Āy = 0 (7)

for all z within the system length if these quantities were

equal to zero at the system entrance position z = 0. The

three remaining equations that define the motion of a parti-

cle on the manifold (7) become1

dx

dz
=

[

px/æ(ε)
]

√

1 −
[

px/æ(ε)
]2

, (8)

1 For our vector potential Eqs. (7) are equivalent to Eqs. y = py = 0.

5th International Particle Accelerator Conference IPAC2014, Dresden, Germany JACoW Publishing
ISBN: 978-3-95450-132-8 doi:10.18429/JACoW-IPAC2014-TUPRO047

TUPRO047
1132

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

14
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

05 Beam Dynamics and Electromagnetic Fields
D01 Beam Optics - Lattices, Correction Schemes, Transport



dpx

dz
= −h0(z), h0(z)

def
=

e

p0
b0(z), (9)

dσ

dz
= 1 −

dæ(ε)

dε

1
√

1 −
[

px/æ(ε)
]2

. (10)

The solution of Eq. (9) is trivial

px (z) = px (0) − a(z), a(z) =

∫ z

0

h0(τ) dτ, (11)

and, after its substitution into Eqs. (8) and (10), one comes

to the problem of evaluation of two definite integrals, which,

as we will show below, can be done in the form of series

involving field integrals and Gegenbauer polynomials.

Gegenbauer Polynomials

in Lee-Whiting’s Notations

Gegenbauer (or ultraspherical) polynomials Cν

n (ψ) can

be defined in terms of their generating function

(

1 − 2tψ + t2
)−ν

=

∞
∑

n=0

Cν

n (ψ) tn . (12)

For us it is convenient to introduce new polynomials follow-

ing Lee-Whiting’s paper on dipole fringe effect [1] via

Dm
n (ψ) = inC

m
2
n (iψ), (13)

where i is the imaginary unit. Then it follows from the

known properties of the Gegenbauer polynomials that

Dm
0 (ψ) = 1, Dm

1 (ψ) = −m ψ, (14)

and that for n ≥ 2 there is the recurrence relation

Dm
n+2(ψ) = − 2n+2+m

n+2
ψDm

n+1(ψ) + n+m
n+2

Dm
n (ψ). (15)

Eqs. (14) and (15) show that all Dm
n (ψ) are real for the

real values of their argument ψ, despite the appearance of

the imaginary unit i in the defining relation (13). As other

important for us properties let us mention the equalities

Dm
2k−1 (0) = 0, Dm

2k (0) =
Γ(k+m

2 )
Γ(k+1) Γ( m

2 )
, (16)

D1
2k (0) = −(2k − 1)D−1

2k (0) =
(2k−1)!!

2k k!
, (17)

where Γ is the Gamma function and k = 1,2,3, . . ..

The usefulness of these polynomials for our considera-

tions is connected with the following two important identi-

ties. Let us assume that

sin(ψ2) = sin(ψ1) − b. (18)

Then

secm (ψ2)

= secm (ψ1)

∞
∑

n=0

Dm
n

[

tan (ψ1)
]

secn (ψ1) bn (19)

and for m , 2 one has

sin (ψ2) secm (ψ2) = −
secm−1 (ψ1)

m − 2

·

∞
∑

n=1

nDm−2
n

[

tan (ψ1)
]

secn−1 (ψ1) bn−1. (20)

Exact Solution in the Form of Series

Let ϕεz be the angle which the trajectory with the initial

conditions px (0) and ε makes with the z-axis. Then one

can write that

px (z)/æ(ε) = sin
(

ϕεz

)

= sin
(

ϕε0

)

− a(z)/æ(ε). (21)

Next, substituting Eqs. (21) into Eq. (8) and then using Eq.

(20), one obtains
dx

dz
= sin

(

ϕεz

)

sec
(

ϕεz

)

=

∞
∑

n=0

(n + 1)D−1
n+1

[
tan
(

ϕε0

)] 
sec
(

ϕε
0

)

æ(ε)


n

an (z), (22)

which can be easily integrated with the result that

x(z) = x(0)

+

∞
∑

n=0

(n + 1)D−1
n+1

[
tan
(

ϕε0

)] 
sec
(

ϕε
0

)

æ(ε)


n

An (z), (23)

where the (scaled) field integrals An are defined as follows

An (z) =

∫ z

0

an (τ) dτ. (24)

By analogy

σ(z) = σ(0) + z

−
dæ(ε)

dε

∞
∑

n=0

D1
n

[
tan
(

ϕε0

)] 
sec
(

ϕε
0

)

æ(ε)


n

An (z). (25)

MOTION OF THE BEAM CENTROID AND

BETATRON OSCILLATIONS

By definition the beam centroid is a particle which has all

coordinates equal to zero at the system entrance. We will

denote the coordinates of the beam centroid by
◦

u and, ac-

cording to the results of the previous section, the dynamics

of the beam centroid is given by the following equations

◦

x(z) = −

∞
∑

k=1

2k
2k−1

D1
2k (0) A2k−1(z)

= −A1(z) − 1
2

A3(z) − 3
8

A5(z) − . . . , (26)

◦

px (z) = −a(z)
def
= sin(

◦

ϕz ), (27)

◦

σ(z) = −

∞
∑

k = 1

D1
2k (0) A2k (z)

= −
1
2

A2(z) − 3
8

A4(z) − 5
16

A6(z) − . . . , (28)

◦

y(z) =
◦

py (z) =
◦

ε(z) = 0. (29)

Let us introduce new variables ũ = u−
◦

u which describe

the deviations of the solution for an arbitrary particle from

the beam centroid coordinates and then linearize the equa-

tions obtained. The resulting equations (the equations of

linear betatron oscillations) are governed by the quadratic

Hamiltonian

H̃2 =
sec3(

◦

ϕz )

2

{
p̃2
x − 2 sin(

◦

ϕz ) p̃x ε̃
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+

[
1 − β2

0 cos2(
◦

ϕz )
]
ε̃2
}

+

1

2

{
sec(

◦

ϕz )
(

p̃y − h
[1]

0

◦

x ỹ

)2
− h

[2]

0

◦

x ỹ
2
}

(30)

and their fundamental matrix solution has the form

M =

*........,

1 r12 0 0 0 r16

0 1 0 0 0 0

0 0 r33 r34 0 0

0 0 r43 r44 0 0

0 r52 0 0 1 r56

0 0 0 0 0 1

+////////-
, (31)

where rkm elements related to the horizontal and longitudi-

nal motion are given by the following expressions

r12(z) = z +

∞
∑

k = 1

(2k + 1)D1
2k (0) A2k (z), (32)

r16(z) = r52(z) =

∞
∑

k = 1

2k D1
2k (0) A2k−1(z), (33)

r56(z) =
z

γ2
0

+

∞
∑

k = 1

*,2k +
1

γ2
0

+- D1
2k (0) A2k (z), (34)

and the elements related to the vertical motion have to be ob-

tained by numerical integration of the equations of vertical

betatron oscillations
d ỹ

dz
= sec(

◦

ϕz )
(

p̃y − h
[1]

0

◦

x ỹ

)

, (35)

dp̃y

dz
= h

[2]

0

◦

x ỹ + sec(
◦

ϕz ) h
[1]

0

◦

x
(

p̃y − h
[1]

0

◦

x ỹ

)

. (36)

To make this integration more efficiently, it is useful to in-

troduce new variables
˜̃y = ỹ, ˜̃py = p̃y − h

[1]

0

◦

x ỹ, (37)

in which Eqs. (35) and (36) are simplified to the form
d ˜̃y

dz
= sec(

◦

ϕz ) ˜̃py , (38)

d ˜̃py

dz
= −h

[1]

0
sin(

◦

ϕz ) sec(
◦

ϕz ) ˜̃y. (39)

Note that Eqs. (35) and (36) are equivalent to the single

second order differential equation

d2
ỹ

dz2
+

[
sin(

◦

ϕz ) sec2(
◦

ϕz )
] d

dz
(h0 ỹ) = 0, (40)

which, as one can expect, in the small angle approximation

turns into the equation

d2
ỹ

dz2
−

[∫ z

0

h0(τ) dτ

]
d

dz
(h0 ỹ) = 0, (41)

which is usually used (typically, after averaging of its coef-

ficients over an undulator period) for the estimation of the

natural vertical focusing of planar undulators.

NONLINEAR DISPERSIONS

By definition the nonlinear longitudinal dispersion ησ is

the difference

ησ (z, ε) = σ(z, ε) −
◦

σ(z)

def
= r56(z) ε + r566(z) ε2

+ r5666 (z) ε3
+ . . . , (42)

where σ(z, ε) is the component of the solution for which

all initial conditions except for a given ε are equal to zero

at the system entrance. Using Eqs. (25) and (28) one can

show that it is given by the following analytical expression

ησ (z, ε) =

∞
∑

k=0

D1
2k (0)

[
1 −

1

æ2k (ε)

dæ(ε)

dε

]
A2k (z). (43)

The coefficients r56...6 can be obtained from Eq. (43) by

expanding the expression in the square brackets with respect

to the variable ε. For example

r56(z) = A2(z) + 3
2

A4(z) + 15
8

A6(z) + . . .

+
1

γ
2
0

[
z + 1

2
A2(z) + 3

8
A4(z) + . . .

]
, (44)

r566(z) = − 3
2

A2(z) − 15
4

A4(z) − 105
16

A6(z) − . . .

−
1

γ
2
0

[
3
2

z + 9
4

A2(z) + 45
16

A4(z) + . . .
]
, (45)

r5666 (z) = 2A2(z) + 15
2

A4(z) + 35
2

A6(z) + . . .

+
2

γ
2
0

[z + 3A2(z) + . . .] + 1

2γ4
0

[
z + 3

2
A2(z) + . . .

]
, (46)

and one can see that in ultrarelativistic limit and for rela-

tively small deflection angles the relations

r566(z) ≈ − 3
2

r56(z), r5666(z) ≈ 2 r56(z), (47)

which are known for the hard edged model of the chicane-

type bunch compressors, are valid for the particle motion in

an arbitrary planar dipole field.

By analogy, for the nonlinear transverse dispersion one

also obtains the following analytical formula

ηx (z, ε) = x(z, ε) −
◦

x(z)

def
= r16(z) ε + r166(z) ε2

+ r1666 (z) ε3
+ . . .

=

∞
∑

k = 1

2k
2k−1

D1
2k (0)

[
1 −

1

æ2k−1 (ε)

]
A2k−1(z). (48)
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