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Abstract 
This contribution presents the results of measurements 

of the resonant frequency and of strain along the contour 
of a single-cell cavity made of ingot Nb subjected to 
increasing uniform differential pressure, up to 6 atm. The 
data were used to infer mechanical properties of this 
material after cavity fabrication, by comparison with the 
results from simulation calculations done with ANSYS. 
The objective is to provide useful information about the 
mechanical properties of ingot Nb cavities which can be 
used in the design phase of SRF cavities intended to be 
built with this material. 

INTRODUCTION 
Superconducting radio-frequency (SRF) cavities made 

of ingot Nb material have shown comparable or better 
performance than those made of standard fine-grain Nb 
[1]. Research on this type of material has been pursued by 
several laboratories and universities throughout the world 
over the past decade and involved measurements of DC 
and RF superconducting properties, mechanical 
properties, thermal properties, field emission properties 
and chemical analysis of the surface after standard 
treatments [2, 3]. 

Mechanical properties of ingot Nb have been measured 
on samples from uniaxial tensile tests, both at room 
temperature and at cryogenic temperatures, and from 
biaxial tensile tests at room temperature [4-7]. Residual 
stresses have been measured in a half-cell after deep-
drawing [8] and a pressure test of a 9-cell cavity up to the 
breaking point of the material has been recently done at 
DESY [9]. The large grain size (typically greater than 1×1 
cm2) of ingot Nb material results in “earing” of the half-
cells after deep-drawing because of non-uniform 
deformation of the different grains.  

An important step during the cavity design is a 
structural analysis to insure that no plastic deformation of 
the cavity occurs under different load conditions. 
Typically, the worst case is an helium gas over 
pressurization of the outside of the “warm” cavity at the 
beginning of a cool-down to 4 K [10]. Finite-element 
modelling (FEM) computer codes, such as ANSYS [11], 
are routinely used to perform this analysis and rely on 
material properties obtained from uniaxial tensile tests of 
samples which were subjected to similar treatment 
processes as those applied to SRF cavities. 

  By measuring the strain, , at different locations along 

the cavity contour as a function of a uniformly applied 
external pressure, P, one can obtain the Young’s modulus 
and Poisson ratio of the material by fitting the data with 
the (P) calculated with FEM codes. 

STRAIN MEASUREMENT 

Experimental Setup 
A single-cell cavity was fabricated from ingot Nb 

supplied by CBMM, Brazil (ingot “F”). The Nb blanks 
were heat-treated at 800 °C/3 h after slicing from the 
ingot by wire electro-discharge machining and prior to 
deep drawing. The average wall thickness of the cavity is 
3.05  0.07 mm. Six calibrated 120  strain gages were 
bonded to the cavity surface using M-Bond 200 adhesive 
(Micro-Measurements, USA). Two gage-packages (EA-
06-030-TU-120, Micro-Measurements, USA, gage factor 
= 2.08) are miniature 90° tee rosettes (0.76 mm gage 
length) and are bonded ~6 mm from the edge of the iris 
weld-prep, along the contour, and ~140° from each other. 
Each package has two gages allowing measuring the 
strain along azimuthal and longitudinal directions. The 
other two strain gages (CEA-06-125-UW-120, Micro-
Measurements, USA, gage factor = 2.01) are bonded ~11 
mm and ~28 mm, respectively, from the edge of the 
equator weld-prep and ~45° from each other. They 
measure strain in the longitudinal direction and the gage 
length is 3.18 mm. Each strain gage is located on a 
different grain of the Nb cavity. The strain gages bonded 
to the cavity are shown in Fig. 1. 

 
Figure 1: Strain gages’ locations. 

The cavity is sealed at the beam-tubes with stainless 
steel (SS) blanks and Indium wire and one of the blanks 
has an RF feed-through with a coaxial antenna to allow 
measuring the resonant frequency of the cavity. The 
cavity inside volume is at atmospheric pressure. The 
cavity is placed on an Al stand inside a 227 l SS pressure 
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