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Abstract

Optics correction algorithms will become even more criti-

cal for the operation of the LHC at 6.5 TeV. For the computa-

tion of local corrections the segment-by-segment technique

is used. We present improvements to this technique and an

advanced error analysis, which increase the sensitivity for

finding local corrections. Furthermore, we will investigate

limitations of this method for lower β∗ optics as they will be

used in the high-luminosity LHC (HL-LHC) upgrade.

INTRODUCTION

The segment-by-segment technique (SbS) was developed

at the LHC for the computation of optics corrections for local,

strong error sources [1]. The concept is to run MAD-X [2]

in a part of the accelerator in between two beam position

monitor (BPM) locations. The optical functions which were

derived from measured turn-by-turn data of the BPMs are the

start parameters for this simulation. For optics corrections

the simulated phase advances between BPMs are compared

to the measured ones, as they are more directly observable

than e.g. the β-function. Possible correction settings aim at

eliminating the deviations in the phase advance. This method

has been very successful at finding local optics corrections

for the LHC, where it was once even able to identify a cable

swap between the two beam apertures in a quadrupole which

caused an unexpectedly large β-beating [3, 4]. SbS was

also successfully tested at RHIC and is fully implemented

there [5].

Another purpose of SbS is the propagation of optical

functions from the BPM positions to other lattice elements.

This allows for example to derive the β-function at the in-

teraction points (β∗). It has also been used to propagate the

optical functions to beam wire scanners for an emittance

study [6] and to collimators for a comparison to beam sizes

as they are measured in beam-based collimator alignment [7].

These studies require very precisely measured β-functions

and improvements to SbS were required to comply with

these demands. Recent improvements related to SbS include

an improved measurement of the β-function from BPM turn-

by-turn data [8] which results in significantly more precise

start parameters for the SbS simulation.

Furthermore, an automatic routine has been developed

to match the measured and simulated phase advances for

finding optics corrections [9, 10]. In the following sections

we will show improvements in the error analysis for SbS

and also present a comparison of simulated local optics

corrections for LHC and HL-LHC, which shows a possible

limitation of SbS for lower β∗ optics.
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IMPROVED ERROR ANALYSIS

Phase Advance

The β-beating propagation can be described by an oscilla-

tion with constant amplitude A which propagates with twice

the betatron oscillation frequency

∆β

β
(s) = A · sin(2 · φ(s) + φ0). (1)

φ(s) + φ0 is the phase of the betatron oscillation at the po-

sition s and φ0 the initial phase for s = 0. Using Eq. (1)

one can approximate the deviation of the phase ∆φ due to

the β-beating at the start of the segment. Error propagation

on ∆φ using the uncertainties σβ0
and σα0

of the optical

functions at the start of the segment leads to the uncertainty

of the propagated phase

σ2
φ(s) =

(

1

2
(cos(2φ(s)) − 1)

α0

β0

+

1

2
sin(2φ(s))

1

β0

)2

σ2
β0
+

(

1

2
(cos(2φ(s)) − 1)

)2

σ2
α0
,

(2)

where α0 and β0 are the initial α- and β-function at the start

of the segment. The computation of uncertainties for the

phase advance in the simulation, which were not regarded

before, allow for a better calculation of optics corrections,

since the uncertainties can be considered as weights when

matching the measured and simulated phase advances. This

feature is part of the automatic matching routine [10].

β- and α-function

The same approach as for the phase advance uncertainty

can also be used for other optical function. The uncertainties

of the propagated α- and β-function at the position s (αs and

βs) are shown in Eqs. (3-4).
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(4)
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σ2
Re( f1001 (s)) = [σ f1001 (s0) cos(φ1001(s0) − φx (s) + φy (s))]2

+ [σφ1001 (s0) f1001(s0) sin(φ1001(s0) − φx (s) + φy (s))]2 (5)

σ2
Im( f1001 (s)) = [σ f1001 (s0) sin(φ1001(s0) − φx (s) + φy (s))]2

+ [σφ1001 (s0) f1001(s0) cos(φ1001(s0) − φx (s) + φy (s))]2 (6)

σ2
Re( f1010 (s)) = [σ f1010 (s0) cos(φ1010(s0) + φx (s) + φy (s))]2

+ [σφ1010 (s0) f1010(s0) sin(φ1010(s0) + φx (s) + φy (s))]2 (7)

σ2
Im( f1010 (s)) = [σ f1010 (s0) sin(φ1010(s0) + φx (s) + φy (s))]2

+ [σφ1010 (s0) f1010(s0) cos(φ1010(s0) + φx (s) + φy (s))]2 (8)

Previously the uncertainties in SbS were only roughly

estimated by running two MAD-X simulations where the

start parameters were changed once by adding their uncer-

tainty and once by subtracting it. This is also more time

consuming than the evaluation of analytic equations, since

more MAD-X runs are necessary. For a tool which is used

online during optics measurements, time efficiency is very

important to ensure an efficient use of the beam time.

Coupling

The control of the betatron coupling is of great importance

in the operation of the LHC and significant progress has been

done for its precise measurement and control [11]. Using

the SbS technique, strong sources of betatron coupling can

be detected and easily corrected. The propagation of the

uncertainty of the relevant driving terms (f1001 and f1010) for

the betatron coupling were computed in the past like those

of the β- and α- functions by evaluating additional MAD-X

simulations where the start parameters have been varied by

their uncertainties.

Analytic formulas have been derived to improve the es-

timation of the uncertainty in the betatron coupling. As

the measured driving terms are given in polar form and

the values have to be input to MAD-X using the R-matrix

formalism, the transformation given in [12] is needed.

Once the values are input to MAD-X the uncertainty for

real and imaginary part of the propagated f1001 and f1010 can

be computed using Eqs. (5-8), with s0 being the longitudi-

nal position of the first BPM in the segment and φx,y the

phase advance from s0 to s and assuming small errors in the

measured phase of the driving terms [13].

Implementation in SbS

To test the implementation of the analytic equations a

Monte-Carlo simulation was used where the start values

of the β- and α-functions are varied randomly following a

Gaussian distribution within their uncertainty. From the

variation of the β- and α-functions at the propagated loca-

tions, the error bars can be derived. Figure 1 compares the

error bars in a specific segment computed by the analytic

equation and the Monte-Carlo simulation. The values com-

puted by analytic equations are clearly agreeing well to the

error bars as they are derived in the Monte-Carlo simula-

tions. Furthermore, the previously used error bars, which

were estimated with two MAD-X runs, are not agreeing well

with the real uncertainties and in many cases overestimate

the error bars significantly. A similar check has been done

for the uncertainties which are calculated for the real and

imaginary part of the propagated f1001 and f1010, cf. Fig.2.

Also in this case the error bars from Eqs. (5-8) are agreeing

well to the Monte-Carlo simulation.
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Figure 1: Error bars for propagation in a segment around the

ATLAS interaction point (IP1). The Monte-Carlo simulation

(green) provides the reference values to which the values

from new analytic equations (red) agree very well. MAD-X

estimate (blue) shows the values as they were computed in

the past before the analytic equations were implemented.

HL-LHC

Recently, studies have been done to investigate how SbS

corrections perform in case of strongly squeezed optics, i.e.

very small β∗, as those at which the HL-LHC is designed to

operate. The effect of gradient errors in the final focusing

quadrupoles (MQX) both for LHC and HL-LHC is shown in
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Figure 2: Error bars for propagation of the coupling driv-

ing terms (f1001 and f1010) in a segment around IP1. The

green dots represent the reference Monte-Carlo simulations

in Python. In red, the error computed using the analytic

equation is displayed.

Fig. 3. The gradient uncertainty for the LHC MQX is 4 ·10−4

in relative units with respect to their main field, whereas

for the HL-LHC MQX even larger uncertainties might be

possible. Figure 4 shows how the β∗ values deviate from the

nominal value, after corrections have been computed and

applied using SbS..

Figure 3: β-beating at IP1 for different gradient errors in the

final focusing quadrupole magnets (b2). The errors are in

relative units with respect to the main field.

Figure 4: β-beating in IP1 for different gradient errors in

the final focusing quadrupole magnets after corrections have

been applied. The gradient errors (b2) are in relative units

with respect to the main field. Corrections were computed

with the automatic matching routine.

Not only do the magnetics errors for the LHC have a much

smaller effect on the β∗, but also the correction improves

the β∗-beating. On the other hand, for the HL-LHC, this

uncertainty is more destructive and the correction algorithm

seems to have large difficulties to improve it, even making it

worse for high gradient uncertainties of the triplet magnets.

These results show that the SbS technique in its currents

state will not be able to provide the desired results for the

future and an effort has to be made in understanding and

improving this behavior.

CONCLUSION

The SbS technique which started as a tool for local optics

corrections of strong error sources, has evolved since then

due to e.g. including more optical parameters like coupling

and dispersion or the propagation of measured β-functions

to other lattice elements. Demands for precisely measured

optical functions at various lattice elements triggered the er-

ror analysis which was presented here. Using the presented

analytic equations for the uncertainty of the propagated op-

tical functions is not only more accurate but also faster than

the previously used additional MAD-X simulations. Fur-

thermore, the uncertainty for the phase advance which is

also derived now in the propagation, can be considered as

a weight when optics corrections are computed which will

increase the sensitivity for finding optics corrections. A re-

maining challenge is the correction of local errors for very

small β∗ optics since the automatic matching routine fails to

find suitable corrections. One improvement which is fore-

seen for SbS would be to include the effect of systematic

error sources from lattice uncertainties. This could further

increase the sensitivity for finding optics corrections.
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