
CURRENT STATUS OF THE GPU-ACCELERATED ELEGANT
∗

J.R. King, I.V. Pogorelov†, Tech-X Corporation, Boulder, CO 80303, USA

M. Borland, R. Soliday, Argonne National Laboratory, Argonne, IL 60439, USA

K. Amyx, Sierra Nevada Corporation, Centennial, CO 80112, USA

Abstract

Efficient implementation of general-purpose particle track-

ing on GPUs can result in significant performance benefits to

large-scale tracking simulations and direct (tracking-based)

accelerator optimization techniques. This paper is an update

on the current status of our work on accelerating Argonne

National Lab’s particle accelerator simulation code ELE-

GANT using CUDA-enabled GPUs. We summarize the

performance of beamline elements ported to GPU, and dis-

cuss optimization techniques for some important collective

effects kernels. We also present the latest results of scaling

studies with realistic lattices of the GPU-accelerated version

of the code.

INTRODUCTION

ELEGANT is an open-source, multi-platform code used

for design, simulation, and optimization of FEL driver linacs,

ERLs, and storage rings [1, 2]. The parallel version, Pele-

gant [3, 4], uses MPI for parallelization. Several “direct”

methods of simultaneously optimizing the dynamic and mo-

mentum aperture of storage ring lattices have recently been

developed at Argonne [5]. These new methods typically

require various forms of tracking the distribution for over a

thousand turns, and so can benefit significantly from faster

tracking capabilities.

Graphics processing units (GPUs) offer unparalleled gen-

eral purpose computing performance, at low cost and at high

performance per watt, for large problems with high levels

of parallelism. Unlike general purpose processors, which

devote significant on-chip resources to command and con-

trol, pre-fetching, caching, instruction-level parallelism, and

instruction cache parallelism, GPUs devote a much larger

amount of silicon to maximizing memory bandwidth and

raw floating point computation power.

Our main goals for this project are (1) to port a wide

variety of beamline elements to GPUs so that ELEGANT

users can take advantage of the high performance that GPUs

can provide, (2) support CUDA-MPI hybrid parallelism to

leverage existing GPU clusters, and (3) maintain ‘silent sup-

port’ so that GPU-accelerated elements can be used without

additional input from the user.

∗ Work supported by the DOE Office of Science, Office of Basic Energy

Sciences grant No. DE-SC0004585, and in part by Tech-X Corporation.

This research used resources of the Oak Ridge Leadership Computing

Facility, which is a DOE Office of Science User Facility supported under

Contract DE-AC05-00OR22725.
† ilya@txcorp.com

BEAMLINE ELEMENT PERFORMANCE

In this section we present a list of the particle beamline el-

ements fully ported to the GPU, and rough estimates of their

acceleration compared to the reference CPU code, compar-

ing an NVIDIA Tesla K20c GPU to an Intel Core i7-3770K

CPU in simulations with a few million particles.

QUAD and DRIFT: Quadrupole and drift elements, im-

plemented as a transport matrix, up to 3rd and 2nd order,

respectively: ∼ 100x acceleration, achieving particle data

bandwidth of 80 gb/s and over 200 GFLOPS in double pre-

cision.

CSBEND: A canonical kick sector dipole magnet with

exact Hamiltonian (computationally intensive): Nearly 30x

acceleration due to its high arithmetic intensity.

KQUAD, KSEXT, MULT: A canonical kick quadrupole,

sextupole, and multipole elements using 4th order symplec-

tic integration: 45x acceleration.

EDRIFT: An exact drift element: Roughly 20x accelera-

tion (purely bandwidth bound).

RCOL: Rectangular collimator: 60x acceleration if parti-

cles are removed from simulation.

LSCDRIFT: Longitudinal space charge impedance: ∼ 45x

acceleration using optimized histogram calculation.

CSRCSBEND: A canonical kick sector dipole with co-

herent synchrotron radiation: Over 50x acceleration using

optimized histogram calculation.

RFCW: RF cavity element, a combination of a first-order

matrix RF cavity with exact phase dependence (RFCA),

longitudinal wake (WAKE) and transverse wake (TRWAKE)

specified as a function of time lag behind the particle, and

LSCDRIFT: over 30x acceleration, convolution-based wake

elements being the primary bottleneck.

SCRAPER: A one-side collimation element: a 14.5x ac-

celeration with intensive random number generation.

MATTER: A Coulomb-scattering and energy-absorbing

element simulating material in the beam path: an accelera-

tion of 23x.

OPTIMIZATION OF

COLLECTIVE-EFFECTS KERNELS

In this section we briefly summarize some of our results

on optimization of the collective-effects elements. A more

detailed discussion can be found in [6].

Histogram Computation

Most collective effects elements in ELEGANT require

computing a histogram, which is difficult on a GPU because

of the thread contention problem. Thread-safe atomic op-

erations do not provide a practical solution to this problem

6th International Particle Accelerator Conference IPAC2015, Richmond, VA, USA JACoW Publishing
ISBN: 978-3-95450-168-7 doi:10.18429/JACoW-IPAC2015-MOPMA035

5: Beam Dynamics and EM Fields
D11 - Code Developments and Simulation Techniques

MOPMA035
623

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

15
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



because they lead to an extreme performance degradation.

Accordingly, we developed an optimized algorithm illus-

trated schematically in Fig. 1. The idea is to create as many

subhistograms in shared memory as possible while main-

taining a high block occupancy, to stride subhistogram ac-

cess by nWarpsPerBlock so as to minimize the costly thread

contentions that arise when threads in the same warp try to

access the same memory location, and then to combine these

subhistograms in shared memory (the latter step incurring

but negligible cost). The final step in our histogram compu-

tation is a __threadfence()-based reduction that combines

the results of multiple thread blocks.

Figure 1: A schematic of the histogram computation algo-

rithm. (See text for details.)

Particle Loss and Sorting

Many beamline elements allow for particle loss. When a

particle is lost on the CPU, it is swapped with the particle

at the end of the particle array and the particle count is

decremented. This algorithm is not amenable to the GPU

where concurrent particle-update operations are performed.

Our particle-loss algorithm is illustrated in Fig. 2. A

computational kernel does two things to incorporate particle

losses: 1) it returns an unsigned integer (zero if the particle

is lost and unity otherwise); and 2) it fills a particle-sort

index with the particle index plus the number of particles

if the particle is lost, and the particle index otherwise. The

particle-loss algorithm then performs a sum reduction over

the return value. If the result is equal to the number of

particles, no particles are lost and the remainder of the loss

computation is skipped. If particles are lost, the end of

particle array (size of the number of lost particles) is sorted

with Thrust::sort, and then sort index is converted to unity if

the particle is lost, and zero otherwise. An inclusive scan is

performed which creates a particle linear index array. When

two subsequent elements of this array are different, a particle

Figure 2: A schematic of the particle-loss sorting algorithm

in GPU-accelerated ELEGANT for a simplified case with

20 total and 4 lost particles. (See text for details.)

is lost and the value of the second element in the pair, i,

indicates that it is the ith article that is lost. This information

is used to produce a contiguous particle loss map which

contains indexing information on the lost particles. A final

step uses the particle loss map to swap particles to the end of

the particle array, and the particle count is decremented by

number of lost particles. Although the final two steps of this

algorithm contain uncoalesced reads and writes, it is still

more efficient than a straightforward sort-by-key algorithm

due to the sparsity of operations.

Relative to the sort-by-key algorithm, this optimized al-

gorithm is 4× faster with 0.5% losses, 3× faster with 5%

losses, 2.5× faster with 10% losses and roughly equivalent

with 50% losses (benchmarking on an NVIDIA Tesla K20c).

DISTRIBUTED-MEMORY SCALING

In this section we present the latest results from per-

formance and scaling studies of the GPU-accelerated EL-

EGANT relative to the CPU-only version of the code.

These studies were performed on the 18,688-node, hybrid-

architecture, Titan Cray XK-7 supercomputer at the Oak

Ridge Leadership Computing Facility at the Oak Ridge Na-

tional Laboratory There are two 8-core AMD Opteron CPUs

and a single NVIDIA Tesla K20x GPU per Titan node. We

use the LCLS beam delivery linac as our test lattice, so that

these studies represent end-to-end application performance

in a realistic setting, as opposed to the kernel- and function-

specific results presented in other sections of this paper.

Results of the weak scaling studies (where the number

of cores is increased in proportion to the problem size) are

shown in Fig. 3. One can see that most beamline elements

exhibit nearly perfect scaling over the explored range of the

6th International Particle Accelerator Conference IPAC2015, Richmond, VA, USA JACoW Publishing
ISBN: 978-3-95450-168-7 doi:10.18429/JACoW-IPAC2015-MOPMA035

MOPMA035
624

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

15
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

5: Beam Dynamics and EM Fields
D11 - Code Developments and Simulation Techniques



Figure 3: Weak scaling results for the GPU-accelerated

version of ELEGANT, arranged by beamline element. LCLS

driver linac lattice was used as the test case for this study.

problem sizes (up to about 1 billion macroparticles, thus

covering an important-in-practice range of problem sizes).

One exception is the RFCW element (a combination of the

simple RF cavity element RFCA, longitudinal and transverse

wakes, and LSC), which shows worse scaling than other

collective-effects elements. We are still working on fully

understanding this issue. It should be noted that the weak

scaling performance of RFCW is quite good nonetheless:

compared to an 8M-particle run on a single Titan node (one

GPU), a 128 times larger simulation (1024M particles on

128 nodes) only takes about 2.5 times as long. The same is

true for the LCLS driver linac simulation as a whole, which

is dominated by the computation of passage through the RF

cavities once the parallel I/O capabilities of Pelegant are

used to reduce the time spent in reading-in the distribution

data. The full LCLS beamline simulation was done within

18 minutes and 20 seconds when using 1 × 109 particles,

which is not far below the number of physical electrons in

the beam. (The number of macroparticles in simulations

with the GPU version of the code can of course be increased

beyond the 1B in our scaling studies.)

Figure 4 represents results from a variant of strong scaling,

where the number of cores is kept constant but the problem

size is increased. For these tests we used a single Titan node

(housing 16 CPU cores and a single GPU) and a compara-

tively small number of particles ranging from 500k to 32M,

so as to get a sense of the code performance in small-scale

simulations on a workstation as opposed to a large parallel

cluster. At 1 million particles, the full application run time is

1 minute on the GPU and 8 minutes 14 seconds on 16 CPU

cores (a greater than 8x speedup). At 8 million particles,

the full application run time is 7 minutes, 19 seconds on

the GPU and one hour and 4 minutes (approximately a 9x

speedup). CPU cases with greater than 8 million particles

have run times too long for the Titan queueing system which

is limited to two hours.

As regards comparing the performance of the GPU-

enabled ELEGANT to that of the parallel CPU-only ver-

sion, one useful metric may be to compare the scaling of

the number of cores needed for the two versions of the code

Figure 4: Strong scaling results for the CPU and GPU ver-

sions of ELEGANT on a single node of Titan. “etc." refers

to the total simulation time minus time spent in RFCW ele-

ments.

to achieve approximately the same time to solution, as the

problem size varies. (As always, for good performance by

the accelerated code, a sufficiently large number of particles

is required on the GPU.) We found that, for an 8M-particle

simulation of the LCLS lattice, a simulation with the GPU

version on 1 Titan node (1 GPU) takes approximately the

same time (7 min 19 sec) as a CPU version run utilizing

128 CPU cores (8 nodes), which finished in 8 min 19 sec.

Timing on Titan with 128M particles resulted in 16 K20 Ke-

pler GPUs (12:57) falling in between 1024 and 2048 cores

(64 and 128 nodes) for the CPU version in terms of time to

solution (17:01 and 9:54, respectively). By this metric, a

GPU cluster would be a more cost-efficient hardware choice

for this type of simulations.

REFERENCES

[1] M. Borland, “elegant: A Flexible SDDS-compliant Code for

Accelerator Simulation”, APS LS-287, September 2000

[2] M. Borland, V. Sajaev, H. Shang, R. Soliday, Y. Wang, A.

Xiao, W. Guo, “Recent Progress and Plans for the Code EL-

EGANT,” in Proceedings of ICAP’09, WE3IOpk02 (2009)

[3] Y. Wang, M. Borland. “Implementation and Performance

of Parallelized ELEGANT”, in Proceedings of PAC07, TH-

PAN095 (2007)

[4] H. Shang, M. Borland, R. Soliday, Y. Wang, “Parallel SDDS:

A Scientific High-Performance I/O Interface,” in Proceedings

of ICAP’09, THPsc050 (2009)

[5] M. Borland, V. Sajaev, L. Emery, and A. Xiao, “Direct Meth-

ods of Optimization of Storage Ring Dynamic and Momen-

tum Aperture”, in Proceedings of PAC09, TH6PFP062 (2009)

[6] K. Amyx, J.R. King, I.V. Pogorelov, M. Borland, and R. Soli-

day, “Current Status of the GPU-Accelerated ELEGANT,",

in Proc. of IPAC’14, p. 454, MOPME035 (2014)

6th International Particle Accelerator Conference IPAC2015, Richmond, VA, USA JACoW Publishing
ISBN: 978-3-95450-168-7 doi:10.18429/JACoW-IPAC2015-MOPMA035

5: Beam Dynamics and EM Fields
D11 - Code Developments and Simulation Techniques

MOPMA035
625

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

15
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


