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Abstract 
The globalised cascaded scattering matrix technique is 

a well proven, practical method that can be used to 
simulate large accelerating RF structures in which 
realistic fabrication errors to be incorporated in an 
efficient manner without the necessity to re-mesh the 
entire geometry. The globalised scattering matrix (GMS) 
technique allows one to obtain the scattering matrix for a 
structure. The method allows rapid e.m. field calculations 
to be obtained.   Results are presented on monopole mode 
fields and dispersion relations calculated from direct  and 
analytical methods.  Analytical approximate results are 
also presented for the equivalent shunt susceptance of an 
iris loaded structure. 

INTRODUCTION 
In large accelerating structures such as the ILC beam 

break up and emittance dilution are major design 
concerns; hence the need to be able to accurately model 
large fractions of these structures in which effects such as 
wakefields, trapped modes, coupler kicks have been taken 
into consideration. GSM has been shown in previous 
works [1-3] to be capable of being employed to accurately 
model such large scale structures. 

MODE MATCHING USING GSM 
Mode matching is an established technique [4-5] which 
has been applied to various accelerator problems for sharp 
transitions consisting of adjoining wide narrow (WN) 
sections [6-10]. The mode matching technique relies upon 
splitting the structure into a series of sub-regions (WN or 
NW regions) in which an analytical solution of Maxwell’s 
equations is given in terms of a series expansion over a 
set of orthogonal modes. The field solutions are then 
obtained by matching the field at the interfaces.  In 
principle there are an infinite number of modes excited at 
a junction. In a practical application of the technique we 
truncate the series with an appropriate ratio of the modes 
in the narrow to wide section. Indeed, numerous studies 
have been preformed on the relative convergence 
phenomena to determine the optimal ratio of modes [11]. 

A MODE MATCHING GSM TECHNIQUE 
FOR FIELD DETERMINATION 

The mode matching procedure presented here differs from 
previous studies. We will consider the case for a 
propagating monopole mode launched form one port. We 
derive an analytical relation for the S matrix for a WN or 
a NW junction.  Let us consider the circular WN junction 
with n modes in region I (wide) and m modes in region II 

(narrow) where m<=n. We shall denote “b” as the radius 
of the wide region and “a” as the radius of the narrow 
region. Analytical electromagnetic fields ev  in a circular 
beam waveguide are provided in [12].  The characteristic 
scalar product is given by nm n m

S

ˆa e e= ⋅ ∂Γ∫  (over the 

aperture S) and this evaluates to: 
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where χ0n is the nth root of J0(χ0n).  For a = b the 
normalisation in [12] corresponds to nm nma = δ  (where δ 
is the Kronecker delta function).  The S matrix at the 
transition is obtained by mode-matching the fields in 
terms of the modal amplitudes at each transition:  
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In the above equations U, 1Z Y−=  is the identity and 
impedance matrix, respectively.   Using Eqs. 1-5 the S 
matrix of a structure decomposed into WN and NW 
transitions can be obtained. The e.m field in any structure 
can be subdivided into one of three different regions, as 
depicted in Fig. 1. Region 1 lies between z=0 and z=1, 
here the S matrix consists of the GSM formed z=z1 and 
z=z3. 

 
Figure 1: Sketch of WNW transition illustrating incident 
and reflected modes. 

Any subsection of a structure will be classified as a region 
2 section, only the first and last sections are classified as 
region 1 and 3 respectively. The S matrix of any region 2 
subsection consists of a propagating matrix representing 
the infinite propagating wave series 0

21S  and a reflected 
matrix 0

11S  representing the infinite reflected wave series 
both which are decaying within the subsection [3]. Here 
the superscripts I and II represent the GSM’s left and 
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right of the subsection respectively, nik z
z nmT e−= δ   and g 

is the length of the subsection. Region 3 lies between 
z=z2 and z=z3, here the S matrix consists of the GSM 
between z=0 and z=z2. Since the S matrices are directly 
proportional to the modal amplitudes then after applying 
the mode matching procedure we obtain the following 
formulae for the three regions: 

Region 1 electric field 
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Region 2 electric field 
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Region 3 electric field 
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To verify the essential behaviour of the fields a wide-
narrow-wide (WNW) junction is considered. A 2D field 
plot showing the radial dependence of the field is 
presented in Fig. 2. This simulation is very efficient as it 
required no more than a few seconds of CPU time in a PC 
compared to up to an hour on a comparable PC with a 
conventional numerical finite element code. 

 
Figure 2: Axial electric Ez for WNW transition as a 
function of radius and axial position. 

ANALYTICAL FORMULAE FOR 
DISPERSION CURVES  

Combining GSM and mode matching in conjunction with 
the Bethe hole coupling perturbation theory [5,13] allows 
exact analytical expressions to be obtained for the 
normalised susceptance B of a structure.  We note that 
B  is equivalent to the coupling constant κ or fractional 
bandwidth of the mode.  Let us consider the case of a 
monopole accelerating mode. From circuit theory [14] we 
can express the relationship between angular frequency ω 
and phase advance per cell Φ in the thin iris 
approximation (where κ<<1 ) as: 

2 1 cos
2π

κ⎛ ⎞ω = ω − Φ⎜ ⎟
⎝ ⎠

    (14) 

where ωπ/2/2π is frequency as a phase advance of π/2.   
The relationship between phase and susceptance can be 
derived using either transmission line theory or from 
considering the ABCD matrix representation [4]: 

( ) ( )z z
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2

Φ = −    (15) 

In Eq. 15 l is the cavity length and zk  is the propagation 
constant of the dominant mode: 

( ) ( )22
z 01k / c / b= ω − χ  (where b is the radius in the 

cavity region and χ01 is the first root of the Bessel 
function J0).  Provided 1<<lkz  then to first order in kzl 
Eq. 15 is simplified to: 

z
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2
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A Bethe hole coupling analysis [5, 13] allows the 
fractional bandwidth to be obtained as:  
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In Eq. 17 a  is the iris radius. Rewriting and comparing 
Eqns. 15 and 16 in terms of Φcos  allows the following 
equation to be derived in the thin iris approximation: 
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    (18) 

An exact formulation for the dominant mode can also 
be obtained by considering a susceptance placed 
symmetrically and in parallel with a transmission line.  
The susceptance normalised to the transmission line 
impedance is then obtained in terms of the reflection 
coefficient of S11(1,1) the dominant mode: [4]: 

( )
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2iS 1,1
B
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The dispersion curve is obtained from the combination of 
Eqns. 15 and 18 have a limited domain of applicability 
due to the thin iris approximation used in obtaining it.  An 
alternative method which circumvents this limitation is to 
consider the S matrix of a cell in an infinite periodic 
structure (obtained from GSM): 
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In Eq. 20 a represents the incident waves and b the 
reflected waves on each port, the subscripts refer to the 
ports.  Applying the Floquet condition: 

i
2 1b e a− Φ=      (21) 

i
1 2b e a− Φ=      (22) 

Eqns. 20-22 represent an eigen-mode problem. Provided 
the field is evaluated sufficiently far away from the 
junction such that all evanescent modes have decayed to 
leave only the dominant propagating mode, we can solve 
for the phase advance. The solution for Φ in terms of the 
dominant propagating mode scattering matrix parameters 
is obtained:  

( ) ( )
( )

2 2
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1 S 1,1 S 1,1
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+ −
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The analytical equation for obtaining a dispersion curve 
using the thin iris approximation (Eqns. 15 and 18), 
reveals there is little discrepancy between the two 
methods provided the iris is sufficiently thin (see Fig. 3). 
However for irises thicker than t=50 μm the Bethe hole 
coupling formula that the analytical susceptance formula, 
which Eq. 18 was based on, is no longer valid. 

The analytical equation derived by considering the S 
matrix of a cell in an infinitely periodic structure (Eq. 23) 
is of course not limited by the thin iris approximation.  
However, it does require all evanescent modes to be small 
compared to the dominant mode.  A Brillouin diagram is 
displayed in Fig. 4 from a calculation based on three 
methods. The transverse mode matching method 
developed herein is in good agreement with results based 
on the longitudinal mode matching code KN7C [15,16]. 
However, there is some discrepancy between HFSS and 
the other methods. The bandwidth obtained from all three 
methods is: 1.074%, 1.100% and 1.066% for KN7C, 
analytical model and HFSS, respectively. 

 
Figure 3: Brillouin diagram calculated using Eq. 15 for 
a = 7.5 mm, b = 38.23 mm, t = 0.10 mm, l = 6.1 mm. The 
analytical approximation corresponding to Eq. 18 is given 
in blue together with the exact model provided by Eq. 19 
in green.  
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Figure 4: Brillouin diagram calculated using an analytical 
(Eq. 23 blue) and numerical approaches (HFSS red and 
KN7c green) for an idealised CLIC_G cell.  
This structure has been represented as a simplified NWN 
transition with cell parameters: a = 2.619 mm, 
b = 9.783 mm, t = 1.202 mm, l = 8.332 mm.  

DISCUSSION 
The transverse mode matching method developed 

herein provides an efficient and accurate means of 
characterising the fields and dispersion relation of 
accelerator structures.  The analytical dispersion relation 
and analytic formula for iris suspectance can be applied to 
specific accelerator cells.   However, the geometrical 
dependence of the analytical formula provides a rapid 
means of designing accelerator cells with sufficiently thin 
irises.  It is planned to extend the mode matching method 
to consider aggregate accelerator structures. 
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