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Abstract

Numerical simulations of charged particle beams require
an approximation to the particle distribution being simu-
lated. We present a mathematical formalism for approx-
imating two-dimensional (2D) particle distribution using
a basis composed of scaled and translated Gauss-Hermite
(STGH) functions. It is computationally efficient, because
it only requires the values of the particle distribution at
(N +1)× (M +1) nodes, whereN andM are the highest
basis function retained in the expansion in each coordinate.
After outlining the mathematical formalism for the expan-
sion, we compare it to the cosine expansion which is cur-
rently used in a code simulating coherent synchrotron radi-
ation. The advantages of the STGH approximation over the
cosine expansion are demonstrated by comparing the com-
putational costs and execution times, as well as manifesting
that unphysical fluctuations in the tail of the approximation
which plague cosine expansion are not a factor in the new
method. All these features make the STGH approxima-
tion valuable for N -body codes simulating the dynamics
of multiparticle systems.

INTRODUCTION

The normalized Gauss-Hermite functions are given by

ψn(v) =
1

√
2nn!

√
π
Hn(v)e−v

2
, (1)

where the Hn(v) are the Hermite polynomials. They are
orthonormal on (−∞,∞) with the weight w(v) = ev

2
:

∫ ∞

−∞
ψn(v)ψm(v)ev

2
dv = δnm, (2)

where δnm is a Kronecker delta. The basis composed of
Gauss-Hermite functions {ψn}Nn=0 are often used in vari-
ous areas of physics, because of their relationship to nor-
mal distribution. The Gauss-Hermite spectral methods,
while possessing some useful properties, only yield good
approximation when scaled. Scaled Gauss-Hermite func-
tions have been used earlier in the context of beam simu-
lations [1, 2, 3]. While most of our motivation and justi-
fication for using scaled Gauss-Hermite function coincides
with theirs, the mathematical formalism and computational
implementation we present here are different. In the new
method: (i) no underlying ellipsoidal distributions are as-
sumed; (ii) the computation of the scaled Gauss-Hermite
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expansion here is done in a more direct and efficient way;
(iii) the Poisson equation and the self-fields are directly ob-
tained, without an expensive multidimensional integration.
The results reported in the earlier work – most notably ap-
preciable increase in accuracy and computational efficiency
over the existing particle-in-cell (PIC) codes – gives us a
reasonable expectation that the approach we present here
is indeed superior to the existing gridless approaches. The
efforts to integrate this 2D formalism into an existing 2D
beam simulation code, as well as extending it to 3D and
implementing a full 3D gridless N -body code as an alter-
native to PIC codes, are currently underway [4].

SCALED AND TRANSLATED
GAUSS-HERMITE BASIS

The 2D gaussian-type functions (i.e., functions which
decay at infinity at least like exp

(−px2 − qy2
)
, with p, q

some positive constants) can be well-approximated by a fi-
nite Gauss-Hermite expansion

f(x, y) =
N∑

n=0

M∑

m=0

anmψn(α1(x− x̄))ψm(α2(y − ȳ)),

(3)
where α1, α2 > 0 and x̄, ȳ are constants. In solving differ-
ential equations, it is important to be able to express deriva-
tives of the function in the same basis. This is achieved via
recurrence relations of Gauss-Hermite polynomials [6]:

Hk+1(z) = 2zHk(z) − 2kHk−1(z), (4)

H ′
k(z) = 2zHk−1(z).

This ability to express coefficients of the derivatives of the
function in terms of coefficients of the function itself ren-
ders solving the Poisson equation in this basis trivial.

In pseudo-spectral methods, such as the collocation
method used in [5], the optimal pseudo-spectral points
are the roots of the HN+1(x) and HM+1(y), denoted by
{γj}Nj=0 and {βk}Mk=0, respectively. The collocation points
are arranged in descending order, i.e., γ0 > γ1 > ... > γN
and β0 > β1 > ... > βM . If the eq. (3) is satisfied at the
collocation points, then it can be written as

f(γ̃j , β̃k) =
N∑

n=0

M∑

m=0

anmψn(γj)ψm(βk), (5)

where 0 ≤ j ≤ N , 0 ≤ j ≤M , and

γ̃j =
γj
α1

+ x̄, β̃k =
βk
α2

+ ȳ. (6)
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It is now convenient to take advantage of the following re-
lation for Hermite polynomials [6]:
n∑

k=0

Hk(x)Hk(y)
2kk!

=
Hn+1(x)Hn(y) −Hn(x)Hn+1(y)

2n+1n!(x− y)
,

(7)
which, for 0 ≤ i, j ≤ N and 0 ≤ k, l ≤M , leads to

N∑

n=0

ψn(γi)ψn(γj)
M∑

m=0

ψm(βk)ψm(βl) = Cikδijδkl. (8)

From eq. (8) it follows for 0 ≤ i ≤ N and 0 ≤ k ≤M :

Cik =
N∑

n=0

[ψn(γi)]
2

M∑

m=0

[ψm(βk)]
2 (9)

after which we finally we obtain the expression for coeffi-
cients anm, with 0 ≤ n ≤ N and 0 ≤ m ≤M :

anm =
N∑

j=0

M∑

k=0

1
Cjk

f(γ̃j , β̃k)ψn(γj)ψm(βk). (10)

By utilizing the property in eq. (7), evaluation of the expan-
sion coefficients anm no longer requires integration over
the entire distribution function, but only its value at the
nodes. Combining eqs. (5) and (10) yields a STGH ap-
proximation to function f .

The scaling factors α1 and α2 for the normalized distri-
bution function f are computed from the standard deviation
in x- and y-coordinates:

α1 =
1√
2σx

, α2 =
1√
2σy

, (11)

while x̄ and ȳ are simply first moments of the DF in x- and
y-coordinates, respectively.

APPLICATION TO SIMULATIONS OF
MULTIPARTICLE SYSTEMS

The STGH expansion is well-suited in the context where
one needs an analytical approximation to the microscopic
Klimontovich density distribution:

f(x, y) =
1

Npart

Npart∑

i=1

δ(x− xi)δ(y − yi), (12)

where Npart is the number of macroparticles. The STGH
expansion can be tailored to the 2D gridlessN -body simu-
lation of charged-particle beams [7, 8] in which:

1. discretely-sampled macroparticle distribution is ana-
lytically approximated by a cosine expansion;

2. the Poisson equation is solved to obtain corresponding
potential and forces acting on each macroparticle;

3. each macroparticle is advanced a small time-step Δt.

The STGH seeks to improve on computationally expensive
cosine expansion in Step 1, while providing an efficient
way to compute the potential and forces.

Figure 1: Three “toy” analytical distributions (superposi-
tions of 1, 2 and 50 gaussians): exact (top row); approxi-
mated by STGH with N = M = 80 (second row); con-

vergence estimators |RNM |2,
∣∣
∣Rgrid

NM

∣∣
∣
2

, |rNM |2 versus the

number of expansion coefficientsN = M ; fraction of neg-
ative volume (panel d) and signal-to-noise ratio (panel e).

STGH Algorithm Outline

The STGH algorithm for computing coefficients anm
can be outlined as follows:

1. tabulate unchanging quantities ψn(γj)ψm(βk)
Cik

;

2. compute scaling and translation factors x̄, x̄, α1, α2;

3. evaluate f
(
γ̃j , β̃k

)
;

4. compute coefficients alm [eq. (10)].

Steps 2-4 are repeated at each time-step of the simulation.

Evaluation of f
(
γ̃j , β̃k

)
in Step 3 is the key to the STGH

approximation. It can be done by counting the number of
particles in some small neighborhood of the node (shifted
histogram estimator), and normalizing it. We also tested
alternative adaptive estimators, but the difference was not
appreciable enough to warrant substantial increase in com-
putational effort.

Convergence and Accuracy of the STGH

Convergence and accuracy of the STGH can be quanti-
fied using several quantities.
When the exact distribution is known:
(i) L2-norm of the difference between the exact and
approximated distributions:
RNM (x, y) = fapx

NM (x, y) − f ex(x, y);
(ii) signal-to-noise ratio (SNR):
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SNR ≡
[
Kx∑

i=1

Ky∑

j=1

(
fapx
ij

)2

] 1
2

[
Kx∑

i=1

Ky∑

j=1

(
f ex
ij − fapx

ij

)2

]− 1
2

.

(Figure 1 shows these for three analytical “toy” distribu-
tions.)
When the exact distribution is not known:
(i) L2-norm of the difference between the approximated
and gridded distributions:
Rgrid
NM (x, y) = fapx

NM (x, y) − fg(x, y);
(ii) correction to the expansion from one step to another:
rNM (x, y) = fapx

N−1M−1 (x, y) − fapx
NM .

STGH VS. COSINE EXPANSION:
ACCURACY AND EFFICIENCY

We compare the cosine and STGH expansion on a set of
particle distributions containing 106 macroparticles, gener-
ated from realistic simulation [9].
Accuracy: As quantified by |RgNM |2, |rNM |2, the STGH is
at least as accurate as the cosine expansion (Fig. 2, second
and third row).
Efficiency: STGH expansion is considerably faster than co-
sine expansion – by about 5-25 times – because it does not
require expensive trigonometric function evaluations, and
each coefficient does not require integration (summation)
over all particles in the distribution (Fig. 2, fourth row).
Unphysical “wiggles” in the particle distribution: Frac-
tion of negative particle distribution for STGH expansion
is considerably lower – by at least an order of of magnitude
(Fig. 2, fifth row; Fig. 3). This is because the cosine basis
functions are non-decaying, while the STGH basis func-
tions decay exponentially.
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Figure 2: Particle distribution from a beam simulation with
Npart = 106 macroparticles at s = 0, 2, 4, 6m, gridded
on a 128 × 128 grid. For the cosine (blue lines) and the
STGH (red) expansion: second and third rows show con-

vergence estimators
∣
∣∣Rgrid

NM

∣
∣∣
2

, |rNM |2; fourth ratio of exe-

cution speeds; and fifth fraction of negative volume.
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Figure 3: Approximations to the particle distribution from
a beam simulation withNpart = 106 macroparticles at s =
4m with the cosine expansion (left column) and the STGH
(right column), with N = M = 4 (first row), N = M =
10 (second row),N = M = 16 (second row).

CONCLUSION

We presented the STGH expansion which is well-suited
when an analytical approximation of the distribution sam-
pled by Npart macroparticles is needed. We have shown
that in the context of simulations of charged particle beams,
the STGH approximation is more accurate and about an or-
der of magnitude faster than the cosine approximation. It is
also immune to a problem of unphysical wiggles in the tails
of the distribution, which is intrinsic to cosine expansion.
Therefore, the STGH provides a more accurate approxi-
mation in the tails of the distribution, which is of pivotal
importance to beam halo simulations. Overall, the STGH
represents a significant improvement over the existing ana-
lytic approximations used in beam simulation codes.
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