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Abstract 
Based on Lienard-Weichert retarded potentials and the 
potential due to the image of charges on the cathode, a 
rigorous relativistic description of the beam transport 
inside the RF-photoinjector is presented. The velocity 
dependent effects are taken into account. Simulations are 
presented for parameters of the "ELSA" photo-cathode.  

INTRODUCTION 
RF-photoinjectors are used as a source of low-

emittance and ultra-high brightness electron beams.  
There are a limited number of codes which take wakefield 
effects into account in computing electron transport in 
photoemission.  Although there are notable exceptions 
which do include these effects numerically [1].  The 
electromagnetic wake in a photoinjector is different from 
the standard case of a coasting ultrarelativistic beam due 
to the rapidly changing velocity. In this situation the 
influence of the acceleration-radiation field, or 
retardation, must be taken in to account in addition to the 
image charges on the cathode. 

The aim of the present paper is to treat the wakefield of 
an intense electron beam strongly accelerated inside a 
cylindrical cavity similar to that of a photoinjector. We 
employ both Lienard-Weichert potentials and the method 
of images in order to derive an analytical expression for 
the field driven by the beam. Electromagnetic field 
expressions are computed for the “ELSA” photoinjector 
  
 
 

 
 
 
 

 
Figure 1: ''ELSA'' photoinjector (144 MHz cavity). 

 
facility [2] schematized in Fig. 1. Furthermore, by 
applying the principle of causality we are able to simplify 
the effects associated with the actual cavity, illustrated in 
Fig. 1, to an analysis of the electromagnetic fields in a 
pill-box cavity. 

The beam pulse is assumed to be axisymmetric, of 
radius a, emitted by the cathode from t = 0 to t = τ  

(where τ is the time at which the photoemission ends), 
with a constant and uniform current density J. The 
acceleration RF-electric field 0E  may be considered as 
constant and uniform provided, the beam pulse duration 

τ<<1/ν (where ν is the RF frequency) and the beam 
radius a is small compared to the cavity radius ℜ . For 
the “ELSA” photoinjector ν = 144 MHz, ℜ = 60 cm, 
πa2=1 cm2; the first condition provides the pulse duration 
τ << 7 ns. Under these conditions, the beam velocity 

( z, t)β  and acceleration (z, t)η  can be shown [3] to be 

parallel to 0E  and independent of time: 
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where: m and e are the rest mass and charge of the 
electron, respectively, z(t) is the longitudinal coordinate 
of an electron at time t, and tz is the time at which an 
element z of the beam leaves the photocathode. 

  
Figure 2:  Field driven by an electron. 

The electromagnetic fields (E , B) generated at time t 
and point P, by an electron, that is moving on a specified 
trajectory depend on the position W(t’) of the electron at 
time t’ (Fig. 2).  These fields are driven from the rebuilt 
scalar and vector potentials Φ and A , respectively. 
Taking into account the boundary condition imposed on 
the cathode by the equipotential and causality, these fields 
are given by Lienard-Weichert expression as 
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where A=(4πε0)
-1, ε0 is the permittivity of free space, 

R W ( t ) P c ( t t )′ ′= = − is the magnitude of the vector 

from the retarded position W to the field point P, and t′ is 
the retarded time.  
  The first term in the parentheses in equation (6) is the 
velocity field while the second one is the acceleration or 
radiation field. The former falls off as 1/R2 while the later 
falls off as 1/R. 

DEVELOPMENT OF LIENARD -
WIECHERT POTENTIALS 

The components of the electromagnetic field driven by 
an electron within the beam and an image of the charge 
on the cathode can be obtained by the projection of  
Lienard-Wiechert fields given by equations (6) and (7) on 
the axes shown in Fig. 3.  This projection is applied in the 

 
Figure 3: Cylindrical coordinates s,θ  and z. 

 
 laboratory frame. The point where we observe the field 
will be taken as the origin of this frame.  The cylindrical 
coordinates (s, θ, z) of a W ′ are defined in Fig. 3.  

The vector from the retarded position of the electron W

 

( t′ ) to the field point p is 
s cos

R ssin
z

− θ
= − θ

′− ζ
                                  (9)  

where the superscript (′) denotes that the values are taken 
at time t’. Since a paraxial approximation is used for the 
beam dynamics, the beam velocity β(t) and the beam 

acceleration ( t )
t

∂β
∂

  are in the same direction. Therefore, 

the double cross product in equation (6) reads 
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Using equations (10) and (6), the field components zE  , 

Er and Eθ on the axes of Fig. 3 are given as 
2 2
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where the indices β and 
.

t
∂ββ =
∂

 denote the field 

components due to the velocity and acceleration; 
respectively. According to the cylindrical symmetry, the 
integration of the component Eθ over the whole beam 
gives zero. 

GENERATION OF GLOBAL 
FIELDS FROM INDIVIDUAL 

COMPONENTS 

We generate the global fields driven by the beam using 
the field components driven by an individual electron and 
corresponding image charge.  For seek of simplicity, we 
show how we can generate the longitudinal component Ez 
of the global field, since the other components are 
identical to the longitudinal one. Consider a cylindrical 
beam pulse, with radius a, carrying a current I, emitted by 
the cathode with a constant and radially uniform current 
density J, moving along the z-axis with velocity β(t) that 
varies with time. For seek of simplicity, we assume that 
the shape of the beam does not change during the 
acceleration. If n(W, t) is the density of electrons or image 
charge at time t then the longitudinal component of the 
global field at the point P is  

3
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where zE (P , t |W) and zE (P , t |W)  are the field 
components due to an electron and image charge; 
respectively, D and D  represent an ensemble of electrons 
and image charges; respectively having an antecedent at 
the retarded time t’and t’’. 

The components zE ( P , t |W) and zE (P , t |W) can be 
written in term of W(t) and W(t) using the following 
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Since the integral will be carried out with respect to 
W W(t )′ ′=  and W W(t )′ ′′= , we can write    
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with  
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where 1( )−Ω ℑ  and  1( )−Ω ℑ  are the Jacobeans of  1−ℑ  

and 1−ℑ ; respectively. 
By means of equations (17-24), equation (17) becomes: 
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APPLICATION OF METHOD 
We apply the method to several emission regimes [4] 

from the photocathode.  A particularly interesting case is 
that which occurs at the end of photoemission, 
corresponding to complete extraction of the beam (i. e at 
the instant t = τ  = 30 ps).   This is illustrated in Fig 4. in 
which the axial electric field is displayed  as a function of 
Z = Hz   for the following parameters I =100 A, E0= 30 
MV/m.  This field is compared to that due to the space 
charge (or self-field) and the image of charge on the 
cathode. At the centre of the cathode (r = 0, z = 0) the 
beam self field and the field driven by the image of 
charges on the cathode are similar.  However, the field of  
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Figure 4: Axial electric field Ez within beam at the end of 
photoemission.  

 
the beam  is dominated by that due to the image charges 
on the cathode as one moves from the tail to the head of 
the beam. Far from the cathode the self-field dominates. 
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